kernel-brax3-ubuntu-touch/drivers/dma-buf/heaps/system_heap.c
erascape f319b992b1 kernel-5.15: Initial import brax3 UT kernel
* halium configs enabled

Signed-off-by: erascape <erascape@proton.me>
2025-09-23 15:17:10 +00:00

1271 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DMABUF System heap exporter
*
* Copyright (C) 2011 Google, Inc.
* Copyright (C) 2019, 2020 Linaro Ltd.
*
* Portions based off of Andrew Davis' SRAM heap:
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
* Andrew F. Davis <afd@ti.com>
*/
#define pr_fmt(fmt) "dma_heap: system "fmt
#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/dma-heap.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <uapi/linux/dma-buf.h>
#include <linux/iommu.h>
#include "mtk_heap_priv.h"
#include "mtk_heap.h"
#include "page_pool.h"
#include "deferred-free-helper.h"
static struct dma_heap *sys_heap;
static struct dma_heap *sys_uncached_heap;
static struct dma_heap *mtk_mm_heap;
static struct dma_heap *mtk_mm_uncached_heap;
atomic64_t dma_heap_normal_total = ATOMIC64_INIT(0);
EXPORT_SYMBOL(dma_heap_normal_total);
struct system_heap_buffer {
struct dma_heap *heap;
struct list_head attachments;
struct mutex lock;
unsigned long len;
struct sg_table sg_table;
int vmap_cnt;
void *vaddr;
struct deferred_freelist_item deferred_free;
bool uncached;
/* helper function */
int (*show)(const struct dma_buf *dmabuf, struct seq_file *s);
/* system heap will not strore sgtable here */
bool mapped[MTK_M4U_TAB_NR_MAX][MTK_M4U_DOM_NR_MAX];
struct mtk_heap_dev_info dev_info[MTK_M4U_TAB_NR_MAX][MTK_M4U_DOM_NR_MAX];
struct sg_table *mapped_table[MTK_M4U_TAB_NR_MAX][MTK_M4U_DOM_NR_MAX];
struct mutex map_lock; /* map iova lock */
pid_t pid;
pid_t tid;
char pid_name[TASK_COMM_LEN];
char tid_name[TASK_COMM_LEN];
unsigned long long ts; /* us */
};
#define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO | __GFP_COMP)
#define MID_ORDER_GFP (LOW_ORDER_GFP | __GFP_NOWARN)
#define HIGH_ORDER_GFP (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
| __GFP_NORETRY) & ~__GFP_RECLAIM) \
| __GFP_COMP)
static gfp_t order_flags[] = {HIGH_ORDER_GFP, MID_ORDER_GFP, LOW_ORDER_GFP};
/*
* The selection of the orders used for allocation (1MB, 64K, 4K) is designed
* to match with the sizes often found in IOMMUs. Using order 4 pages instead
* of order 0 pages can significantly improve the performance of many IOMMUs
* by reducing TLB pressure and time spent updating page tables.
*/
static const unsigned int orders[] = {8, 4, 0};
#define NUM_ORDERS ARRAY_SIZE(orders)
struct dmabuf_page_pool *pools[NUM_ORDERS];
/* function declare */
static int system_buf_priv_dump(const struct dma_buf *dmabuf,
struct seq_file *s);
static struct sg_table *dup_sg_table(struct sg_table *table)
{
struct sg_table *new_table;
int ret, i;
struct scatterlist *sg, *new_sg;
new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
if (!new_table)
return ERR_PTR(-ENOMEM);
ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
if (ret) {
kfree(new_table);
return ERR_PTR(-ENOMEM);
}
new_sg = new_table->sgl;
for_each_sgtable_sg(table, sg, i) {
sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
new_sg = sg_next(new_sg);
}
return new_table;
}
static struct sg_table *dup_sg_table_by_range(struct sg_table *table,
unsigned int offset, unsigned int len)
{
struct sg_table *new_table;
int ret, i;
struct scatterlist *sg, *new_sg;
unsigned int sg_offset = 0, sg_len;
unsigned int contig_size = 0, found_start = 0;
new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
if (!new_table)
return ERR_PTR(-ENOMEM);
ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
if (ret) {
kfree(new_table);
return ERR_PTR(-ENOMEM);
}
new_sg = new_table->sgl;
new_table->nents = 0;
for_each_sg(table->sgl, sg, table->orig_nents, i) {
if (!found_start) {
sg_offset += sg->length;
if (sg_offset <= offset)
continue;
found_start = 1;
sg_len = len + sg->length - (sg_offset - offset);
}
if (contig_size >= sg_len)
break;
memcpy(new_sg, sg, sizeof(*sg));
contig_size += sg->length;
new_sg = sg_next(new_sg);
new_table->nents++;
}
return new_table;
}
/* source copy to dest, no memory alloc */
static int copy_sg_table(struct sg_table *source, struct sg_table *dest)
{
int i;
struct scatterlist *sgl, *dest_sgl;
if (source->orig_nents != dest->orig_nents) {
pr_info("nents not match %d-%d\n",
source->orig_nents, dest->orig_nents);
return -EINVAL;
}
/* copy mapped nents */
dest->nents = source->nents;
dest_sgl = dest->sgl;
for_each_sg(source->sgl, sgl, source->orig_nents, i) {
memcpy(dest_sgl, sgl, sizeof(*sgl));
dest_sgl = sg_next(dest_sgl);
}
return 0;
};
/*
* must check domain info before call fill_buffer_info
* @Return 0: pass
*/
static int fill_buffer_info(struct system_heap_buffer *buffer,
struct sg_table *table,
struct dma_buf_attachment *a,
enum dma_data_direction dir,
unsigned int tab_id, unsigned int dom_id)
{
struct sg_table *new_table = NULL;
int ret = 0;
/*
* devices without iommus attribute,
* use common flow, skip set buf_info
*/
if (tab_id >= MTK_M4U_TAB_NR_MAX || dom_id >= MTK_M4U_DOM_NR_MAX)
return 0;
if (buffer->mapped[tab_id][dom_id]) {
pr_info("%s err: already mapped before\n", __func__);
return -EINVAL;
}
new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
if (!new_table)
return -ENOMEM;
ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
if (ret) {
pr_info("%s err: sg_alloc_table failed\n", __func__);
kfree(new_table);
return -ENOMEM;
}
ret = copy_sg_table(table, new_table);
if (ret)
return ret;
buffer->mapped_table[tab_id][dom_id] = new_table;
buffer->mapped[tab_id][dom_id] = true;
buffer->dev_info[tab_id][dom_id].dev = a->dev;
buffer->dev_info[tab_id][dom_id].direction = dir;
/* TODO: check map_attrs affect??? */
buffer->dev_info[tab_id][dom_id].map_attrs = a->dma_map_attrs;
return 0;
}
static int system_heap_attach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
struct sg_table *table;
a = kzalloc(sizeof(*a), GFP_KERNEL);
if (!a)
return -ENOMEM;
table = dup_sg_table(&buffer->sg_table);
if (IS_ERR(table)) {
kfree(a);
return -ENOMEM;
}
a->table = table;
a->dev = attachment->dev;
INIT_LIST_HEAD(&a->list);
a->mapped = false;
a->uncached = buffer->uncached;
attachment->priv = a;
mutex_lock(&buffer->lock);
list_add(&a->list, &buffer->attachments);
mutex_unlock(&buffer->lock);
return 0;
}
static void system_heap_detach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a = attachment->priv;
mutex_lock(&buffer->lock);
list_del(&a->list);
mutex_unlock(&buffer->lock);
sg_free_table(a->table);
kfree(a->table);
kfree(a);
}
static struct sg_table *mtk_mm_heap_map_dma_buf(struct dma_buf_attachment *attachment,
enum dma_data_direction direction)
{
struct dma_heap_attachment *a = attachment->priv;
struct sg_table *table = a->table;
int attr = attachment->dma_map_attrs;
int ret;
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(attachment->dev);
unsigned int dom_id = MTK_M4U_DOM_NR_MAX, tab_id = MTK_M4U_TAB_NR_MAX;
struct system_heap_buffer *buffer = attachment->dmabuf->priv;
if (a->uncached)
attr |= DMA_ATTR_SKIP_CPU_SYNC;
mutex_lock(&buffer->map_lock);
if (fwspec) {
dom_id = MTK_M4U_TO_DOM(fwspec->ids[0]);
tab_id = MTK_M4U_TO_TAB(fwspec->ids[0]);
}
/* device with iommus attribute AND mapped before */
if (fwspec && buffer->mapped[tab_id][dom_id]) {
/* mapped before, return saved table */
ret = copy_sg_table(buffer->mapped_table[tab_id][dom_id], table);
mutex_unlock(&buffer->map_lock);
if (ret)
return ERR_PTR(-EINVAL);
a->mapped = true;
if (!(attr & DMA_ATTR_SKIP_CPU_SYNC))
dma_sync_sgtable_for_device(attachment->dev, table, direction);
return table;
}
/* first map OR device without iommus attribute */
if (dma_map_sgtable(attachment->dev, table, direction, attr)) {
pr_info("%s map fail tab:%d, dom:%d, dev:%s\n",
__func__, tab_id, dom_id, dev_name(attachment->dev));
mutex_unlock(&buffer->map_lock);
return ERR_PTR(-ENOMEM);
}
ret = fill_buffer_info(buffer, table,
attachment, direction, tab_id, dom_id);
if (ret) {
mutex_unlock(&buffer->map_lock);
return ERR_PTR(ret);
}
mutex_unlock(&buffer->map_lock);
a->mapped = true;
return table;
}
static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
enum dma_data_direction direction)
{
struct dma_heap_attachment *a = attachment->priv;
struct sg_table *table = a->table;
int attr = attachment->dma_map_attrs;
int ret;
if (a->uncached)
attr |= DMA_ATTR_SKIP_CPU_SYNC;
ret = dma_map_sgtable(attachment->dev, table, direction, attr);
if (ret)
return ERR_PTR(ret);
a->mapped = true;
return table;
}
static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
struct sg_table *table,
enum dma_data_direction direction)
{
struct dma_heap_attachment *a = attachment->priv;
int attr = attachment->dma_map_attrs;
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(attachment->dev);
struct dma_buf *buf = attachment->dmabuf;
if (a->uncached)
attr |= DMA_ATTR_SKIP_CPU_SYNC;
a->mapped = false;
/*
* mtk_mm heap: for devices with iommus attribute,
* unmap iova when release dma-buf.
* system heap: unmap it every time
*/
if (is_mtk_mm_heap_dmabuf(buf) && fwspec) {
if (!(attr & DMA_ATTR_SKIP_CPU_SYNC))
dma_sync_sgtable_for_cpu(attachment->dev, table, direction);
return;
}
dma_unmap_sgtable(attachment->dev, table, direction, attr);
}
static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt)
invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
if (!buffer->uncached) {
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
dma_sync_sgtable_for_cpu(a->dev, a->table, direction);
}
}
mutex_unlock(&buffer->lock);
return 0;
}
static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt)
flush_kernel_vmap_range(buffer->vaddr, buffer->len);
if (!buffer->uncached) {
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
dma_sync_sgtable_for_device(a->dev, a->table, direction);
}
}
mutex_unlock(&buffer->lock);
return 0;
}
static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct sg_table *table = &buffer->sg_table;
unsigned long addr = vma->vm_start;
struct sg_page_iter piter;
int ret;
if (buffer->uncached)
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
for_each_sgtable_page(table, &piter, vma->vm_pgoff) {
struct page *page = sg_page_iter_page(&piter);
ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE,
vma->vm_page_prot);
if (ret)
return ret;
addr += PAGE_SIZE;
if (addr >= vma->vm_end)
return 0;
}
return 0;
}
static int mtk_mm_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct sg_table *table = &buffer->sg_table;
unsigned long addr = vma->vm_start;
unsigned long offset = vma->vm_pgoff * PAGE_SIZE;
struct scatterlist *sg;
unsigned int i;
int ret;
if (buffer->uncached)
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
for_each_sg(table->sgl, sg, table->nents, i) {
struct page *page = sg_page(sg);
unsigned long remainder = vma->vm_end - addr;
unsigned long len = sg->length;
if (offset >= sg->length) {
offset -= sg->length;
continue;
} else if (offset) {
page += offset / PAGE_SIZE;
len = sg->length - offset;
offset = 0;
}
len = min(len, remainder);
ret = remap_pfn_range(vma, addr, page_to_pfn(page), len,
vma->vm_page_prot);
if (ret)
return ret;
addr += len;
if (addr >= vma->vm_end)
return 0;
}
return 0;
}
static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
{
struct sg_table *table = &buffer->sg_table;
int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
struct page **pages = vmalloc(sizeof(struct page *) * npages);
struct page **tmp = pages;
struct sg_page_iter piter;
pgprot_t pgprot = PAGE_KERNEL;
void *vaddr;
if (!pages)
return ERR_PTR(-ENOMEM);
if (buffer->uncached)
pgprot = pgprot_writecombine(PAGE_KERNEL);
for_each_sgtable_page(table, &piter, 0) {
WARN_ON(tmp - pages >= npages);
*tmp++ = sg_page_iter_page(&piter);
}
vaddr = vmap(pages, npages, VM_MAP, pgprot);
vfree(pages);
if (!vaddr)
return ERR_PTR(-ENOMEM);
return vaddr;
}
static int system_heap_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
{
struct system_heap_buffer *buffer = dmabuf->priv;
void *vaddr;
int ret = 0;
mutex_lock(&buffer->lock);
if (buffer->vmap_cnt) {
buffer->vmap_cnt++;
dma_buf_map_set_vaddr(map, buffer->vaddr);
goto out;
}
vaddr = system_heap_do_vmap(buffer);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto out;
}
buffer->vaddr = vaddr;
buffer->vmap_cnt++;
dma_buf_map_set_vaddr(map, buffer->vaddr);
out:
mutex_unlock(&buffer->lock);
return ret;
}
static void system_heap_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
{
struct system_heap_buffer *buffer = dmabuf->priv;
mutex_lock(&buffer->lock);
if (!--buffer->vmap_cnt) {
vunmap(buffer->vaddr);
buffer->vaddr = NULL;
}
mutex_unlock(&buffer->lock);
dma_buf_map_clear(map);
}
static int system_heap_zero_buffer(struct system_heap_buffer *buffer)
{
struct sg_table *sgt = &buffer->sg_table;
struct sg_page_iter piter;
struct page *p;
void *vaddr;
int ret = 0;
for_each_sgtable_page(sgt, &piter, 0) {
p = sg_page_iter_page(&piter);
vaddr = kmap_local_page(p);
memset(vaddr, 0, PAGE_SIZE);
kunmap_local(vaddr);
}
return ret;
}
static void system_heap_buf_free(struct deferred_freelist_item *item,
enum df_reason reason)
{
struct system_heap_buffer *buffer;
struct sg_table *table;
struct scatterlist *sg;
int i, j;
buffer = container_of(item, struct system_heap_buffer, deferred_free);
/* Zero the buffer pages before adding back to the pool */
if (reason == DF_NORMAL)
if (system_heap_zero_buffer(buffer))
reason = DF_UNDER_PRESSURE; // On failure, just free
table = &buffer->sg_table;
for_each_sgtable_sg(table, sg, i) {
struct page *page = sg_page(sg);
if (reason == DF_UNDER_PRESSURE) {
__free_pages(page, compound_order(page));
} else {
for (j = 0; j < NUM_ORDERS; j++) {
if (compound_order(page) == orders[j])
break;
}
if (j < NUM_ORDERS)
dmabuf_page_pool_free(pools[j], page);
else
pr_info("%s error order:%u\n", __func__, compound_order(page));
}
}
sg_free_table(table);
kfree(buffer);
}
static void mtk_mm_heap_dma_buf_release(struct dma_buf *dmabuf)
{
struct system_heap_buffer *buffer = dmabuf->priv;
int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
unsigned long buf_len = buffer->len;
int i, j;
spin_lock(&dmabuf->name_lock);
pr_debug("%s: inode:%lu, size:%lu, name:%s\n", __func__,
file_inode(dmabuf->file)->i_ino, buffer->len,
dmabuf->name?:"NULL");
spin_unlock(&dmabuf->name_lock);
dmabuf_release_check(dmabuf);
/* unmap all domains' iova */
for (i = 0; i < MTK_M4U_TAB_NR_MAX; i++) {
for (j = 0; j < MTK_M4U_DOM_NR_MAX; j++) {
struct sg_table *table = buffer->mapped_table[i][j];
struct mtk_heap_dev_info dev_info = buffer->dev_info[i][j];
unsigned long attrs = dev_info.map_attrs;
if (buffer->uncached)
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
if (!buffer->mapped[i][j])
continue;
dma_unmap_sgtable(dev_info.dev, table, dev_info.direction, attrs);
buffer->mapped[i][j] = false;
sg_free_table(table);
kfree(table);
}
}
/* free buffer memory */
deferred_free(&buffer->deferred_free, system_heap_buf_free, npages);
if (atomic64_sub_return(buf_len, &dma_heap_normal_total) < 0) {
pr_info("warn: %s, total memory underflow, 0x%lx!!, reset as 0\n",
__func__, atomic64_read(&dma_heap_normal_total));
atomic64_set(&dma_heap_normal_total, 0);
}
}
static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
{
struct system_heap_buffer *buffer = dmabuf->priv;
unsigned long buf_len = buffer->len;
struct sg_table *table;
struct scatterlist *sg;
int i, j;
dmabuf_release_check(dmabuf);
/* Zero the buffer pages before adding back to the pool */
system_heap_zero_buffer(buffer);
table = &buffer->sg_table;
for_each_sgtable_sg(table, sg, i) {
struct page *page = sg_page(sg);
for (j = 0; j < NUM_ORDERS; j++) {
if (compound_order(page) == orders[j])
break;
}
if (j < NUM_ORDERS)
dmabuf_page_pool_free(pools[j], page);
else
pr_info("%s error: order %u\n", __func__, compound_order(page));
}
sg_free_table(table);
kfree(buffer);
if (atomic64_sub_return(buf_len, &dma_heap_normal_total) < 0) {
pr_info("warn: %s, total memory underflow, 0x%lx!!, reset as 0\n",
__func__, atomic64_read(&dma_heap_normal_total));
atomic64_set(&dma_heap_normal_total, 0);
}
}
static int system_heap_dma_buf_get_flags(struct dma_buf *dmabuf, unsigned long *flags)
{
struct system_heap_buffer *buffer = dmabuf->priv;
*flags = buffer->uncached;
return 0;
}
static int dmabuf_check_user_args(unsigned int offset, unsigned int len,
unsigned long buf_len)
{
if (!len || len > buf_len || offset >= buf_len ||
offset + len > buf_len)
return -EINVAL;
return 0;
}
static int mtk_mm_heap_dma_buf_begin_cpu_access_partial(struct dma_buf *dmabuf,
enum dma_data_direction direction,
unsigned int offset, unsigned int len)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
struct sg_table *sgt_tmp;
int ret;
mutex_lock(&buffer->lock);
ret = dmabuf_check_user_args(offset, len, buffer->len);
if (ret) {
pr_err("%s: invalid args, off:0x%x, len:0x%x, buf_len:0x%lx\n",
__func__, offset, len, buffer->len);
mutex_unlock(&buffer->lock);
return ret;
}
if (buffer->vmap_cnt)
invalidate_kernel_vmap_range(buffer->vaddr + offset, len);
if (!buffer->uncached) {
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
sgt_tmp = dup_sg_table_by_range(a->table, offset, len);
if (IS_ERR(sgt_tmp)) {
pr_err("%s: dup sg_table failed!\n", __func__);
mutex_unlock(&buffer->lock);
return -ENOMEM;
}
dma_sync_sg_for_cpu(a->dev, sgt_tmp->sgl,
sgt_tmp->nents, direction);
sg_free_table(sgt_tmp);
kfree(sgt_tmp);
}
}
mutex_unlock(&buffer->lock);
return 0;
}
static int mtk_mm_heap_dma_buf_end_cpu_access_partial(struct dma_buf *dmabuf,
enum dma_data_direction direction,
unsigned int offset, unsigned int len)
{
struct system_heap_buffer *buffer = dmabuf->priv;
struct dma_heap_attachment *a;
struct sg_table *sgt_tmp;
int ret;
mutex_lock(&buffer->lock);
ret = dmabuf_check_user_args(offset, len, buffer->len);
if (ret) {
pr_err("%s: invalid args, off:0x%x, len:0x%x, buf_len:0x%lx\n",
__func__, offset, len, buffer->len);
mutex_unlock(&buffer->lock);
return ret;
}
if (buffer->vmap_cnt)
flush_kernel_vmap_range(buffer->vaddr + offset, len);
if (!buffer->uncached) {
list_for_each_entry(a, &buffer->attachments, list) {
if (!a->mapped)
continue;
sgt_tmp = dup_sg_table_by_range(a->table, offset, len);
if (IS_ERR(sgt_tmp)) {
pr_err("%s: dup sg_table failed!\n", __func__);
mutex_unlock(&buffer->lock);
return -ENOMEM;
}
dma_sync_sg_for_device(a->dev, sgt_tmp->sgl,
sgt_tmp->nents, direction);
sg_free_table(sgt_tmp);
kfree(sgt_tmp);
}
}
mutex_unlock(&buffer->lock);
return 0;
}
static const struct dma_buf_ops mtk_mm_heap_buf_ops = {
/* 1 attachment can only map 1 iova */
.cache_sgt_mapping = 1,
.attach = system_heap_attach,
.detach = system_heap_detach,
.map_dma_buf = mtk_mm_heap_map_dma_buf,
.unmap_dma_buf = system_heap_unmap_dma_buf,
.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
.end_cpu_access = system_heap_dma_buf_end_cpu_access,
.begin_cpu_access_partial =
mtk_mm_heap_dma_buf_begin_cpu_access_partial,
.end_cpu_access_partial = mtk_mm_heap_dma_buf_end_cpu_access_partial,
.mmap = mtk_mm_heap_mmap,
.vmap = system_heap_vmap,
.vunmap = system_heap_vunmap,
.release = mtk_mm_heap_dma_buf_release,
.get_flags = system_heap_dma_buf_get_flags,
};
static const struct dma_buf_ops system_heap_buf_ops = {
/* 1 attachment can only map 1 iova */
.cache_sgt_mapping = 1,
.attach = system_heap_attach,
.detach = system_heap_detach,
.map_dma_buf = system_heap_map_dma_buf,
.unmap_dma_buf = system_heap_unmap_dma_buf,
.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
.end_cpu_access = system_heap_dma_buf_end_cpu_access,
.mmap = system_heap_mmap,
.vmap = system_heap_vmap,
.vunmap = system_heap_vunmap,
.release = system_heap_dma_buf_release,
.get_flags = system_heap_dma_buf_get_flags,
};
static struct page *alloc_largest_available(unsigned long size,
unsigned int max_order)
{
struct page *page;
unsigned int i;
for (i = 0; i < NUM_ORDERS; i++) {
if (size < (PAGE_SIZE << orders[i]))
continue;
if (max_order < orders[i])
continue;
page = dmabuf_page_pool_alloc(pools[i]);
if (!page)
continue;
return page;
}
return NULL;
}
static struct dma_buf *system_heap_do_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags,
bool uncached,
const struct dma_buf_ops *ops)
{
struct system_heap_buffer *buffer;
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
unsigned long size_remaining = len;
unsigned int max_order = orders[0];
struct dma_buf *dmabuf;
struct sg_table *table;
struct scatterlist *sg;
struct list_head pages;
struct page *page, *tmp_page;
int i, ret = -ENOMEM;
struct task_struct *task = current->group_leader;
if (len / PAGE_SIZE > totalram_pages()) {
pr_info("%s error: len %ld is more than %ld\n",
__func__, len, totalram_pages() * PAGE_SIZE);
return ERR_PTR(-ENOMEM);
}
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (!buffer)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&buffer->attachments);
mutex_init(&buffer->lock);
buffer->heap = heap;
buffer->len = len;
buffer->uncached = uncached;
INIT_LIST_HEAD(&pages);
i = 0;
while (size_remaining > 0) {
/*
* Avoid trying to allocate memory if the process
* has been killed by SIGKILL
*/
if (fatal_signal_pending(current)) {
ret = -EINTR;
pr_info("%s, %d, %s, current process fatal_signal_pending\n",
__func__, __LINE__, dma_heap_get_name(heap));
goto free_buffer;
}
page = alloc_largest_available(size_remaining, max_order);
if (!page) {
if (fatal_signal_pending(current)) {
ret = -EINTR;
pr_info("%s, %d, %s, current process fatal_signal_pending\n",
__func__, __LINE__, dma_heap_get_name(heap));
}
goto free_buffer;
}
list_add_tail(&page->lru, &pages);
size_remaining -= page_size(page);
max_order = compound_order(page);
i++;
}
table = &buffer->sg_table;
if (sg_alloc_table(table, i, GFP_KERNEL))
goto free_buffer;
sg = table->sgl;
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
sg_set_page(sg, page, page_size(page), 0);
sg = sg_next(sg);
list_del(&page->lru);
}
mutex_init(&buffer->map_lock);
/* add alloc pid & tid info */
get_task_comm(buffer->pid_name, task);
get_task_comm(buffer->tid_name, current);
buffer->pid = task_pid_nr(task);
buffer->tid = task_pid_nr(current);
buffer->ts = sched_clock() / 1000;
buffer->show = system_buf_priv_dump;
/* create the dmabuf */
exp_info.exp_name = dma_heap_get_name(heap);
exp_info.ops = ops;
exp_info.size = buffer->len;
exp_info.flags = fd_flags;
exp_info.priv = buffer;
dmabuf = dma_buf_export(&exp_info);
if (IS_ERR(dmabuf)) {
ret = PTR_ERR(dmabuf);
goto free_pages;
}
/*
* For uncached buffers, we need to initially flush cpu cache, since
* the __GFP_ZERO on the allocation means the zeroing was done by the
* cpu and thus it is likely cached. Map (and implicitly flush) and
* unmap it now so we don't get corruption later on.
*/
if (buffer->uncached) {
dma_map_sgtable(dma_heap_get_dev(heap), table, DMA_BIDIRECTIONAL, 0);
dma_unmap_sgtable(dma_heap_get_dev(heap), table, DMA_BIDIRECTIONAL, 0);
}
atomic64_add(dmabuf->size, &dma_heap_normal_total);
return dmabuf;
free_pages:
for_each_sgtable_sg(table, sg, i) {
struct page *p = sg_page(sg);
__free_pages(p, compound_order(p));
}
sg_free_table(table);
free_buffer:
list_for_each_entry_safe(page, tmp_page, &pages, lru)
__free_pages(page, compound_order(page));
kfree(buffer);
return ERR_PTR(ret);
}
static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
return system_heap_do_allocate(heap, len, fd_flags, heap_flags, false,
&system_heap_buf_ops);
}
static struct dma_buf *mtk_mm_heap_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
return system_heap_do_allocate(heap, len, fd_flags, heap_flags, false,
&mtk_mm_heap_buf_ops);
}
static long system_get_pool_size(struct dma_heap *heap)
{
int i;
long num_pages = 0;
struct dmabuf_page_pool **pool;
pool = pools;
for (i = 0; i < NUM_ORDERS; i++, pool++) {
num_pages += ((*pool)->count[POOL_LOWPAGE] +
(*pool)->count[POOL_HIGHPAGE]) << (*pool)->order;
}
return num_pages << PAGE_SHIFT;
}
static const struct dma_heap_ops system_heap_ops = {
.allocate = system_heap_allocate,
.get_pool_size = system_get_pool_size,
};
static const struct dma_heap_ops mtk_mm_heap_ops = {
.allocate = mtk_mm_heap_allocate,
};
static struct dma_buf *system_uncached_heap_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
return system_heap_do_allocate(heap, len, fd_flags, heap_flags, true,
&system_heap_buf_ops);
}
static struct dma_buf *mtk_mm_uncached_heap_allocate(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
return system_heap_do_allocate(heap, len, fd_flags, heap_flags, true,
&mtk_mm_heap_buf_ops);
}
/* Dummy function to be used until we can call coerce_mask_and_coherent */
static struct dma_buf *uncached_heap_not_initialized(struct dma_heap *heap,
unsigned long len,
unsigned long fd_flags,
unsigned long heap_flags)
{
return ERR_PTR(-EBUSY);
}
static struct dma_heap_ops system_uncached_heap_ops = {
/* After system_heap_create is complete, we will swap this */
.allocate = uncached_heap_not_initialized,
};
static struct dma_heap_ops mtk_mm_uncached_heap_ops = {
/* After system_heap_create is complete, we will swap this */
.allocate = uncached_heap_not_initialized,
};
static int system_buf_priv_dump(const struct dma_buf *dmabuf,
struct seq_file *s)
{
int i = 0, j = 0;
struct system_heap_buffer *buf = dmabuf->priv;
dmabuf_dump(s, "\tbuf_priv: uncached:%d alloc_pid:%d(%s)tid:%d(%s) alloc_time:%luus\n",
!!buf->uncached,
buf->pid, buf->pid_name,
buf->tid, buf->tid_name,
buf->ts);
if (is_system_heap_dmabuf(dmabuf))
return 0;
for (i = 0; i < MTK_M4U_TAB_NR_MAX; i++) {
for (j = 0; j < MTK_M4U_DOM_NR_MAX; j++) {
bool mapped = buf->mapped[i][j];
struct device *dev = buf->dev_info[i][j].dev;
struct sg_table *sgt = buf->mapped_table[i][j];
if (!sgt || !dev || !dev_iommu_fwspec_get(dev))
continue;
dmabuf_dump(s,
"\tbuf_priv: tab:%-2d dom:%-2d map:%d iova:0x%-12lx attr:0x%-4lx dir:%-2d dev:%s\n",
i, j, mapped,
sg_dma_address(sgt->sgl),
buf->dev_info[i][j].map_attrs,
buf->dev_info[i][j].direction,
dev_name(dev));
}
}
return 0;
}
/**
* return none-zero value means dump fail.
* maybe the input dmabuf isn't this heap buffer, no need dump
*
* return 0 means dump pass
*/
static int system_heap_buf_priv_dump(const struct dma_buf *dmabuf,
struct dma_heap *heap,
void *priv)
{
struct seq_file *s = priv;
struct system_heap_buffer *buf = dmabuf->priv;
if (!is_system_heap_dmabuf(dmabuf) && !is_mtk_mm_heap_dmabuf(dmabuf))
return -EINVAL;
if (heap != buf->heap)
return -EINVAL;
if (buf->show)
return buf->show(dmabuf, s);
return -EINVAL;
}
static struct mtk_heap_priv_info system_heap_priv = {
.buf_priv_dump = system_heap_buf_priv_dump,
};
static int set_heap_dev_dma(struct device *heap_dev)
{
int err = 0;
if (!heap_dev)
return -EINVAL;
dma_coerce_mask_and_coherent(heap_dev, DMA_BIT_MASK(64));
if (!heap_dev->dma_parms) {
heap_dev->dma_parms = devm_kzalloc(heap_dev,
sizeof(*heap_dev->dma_parms),
GFP_KERNEL);
if (!heap_dev->dma_parms)
return -ENOMEM;
err = dma_set_max_seg_size(heap_dev, (unsigned int)DMA_BIT_MASK(64));
if (err) {
devm_kfree(heap_dev, heap_dev->dma_parms);
dev_err(heap_dev, "Failed to set DMA segment size, err:%d\n", err);
return err;
}
}
return 0;
}
static int system_heap_create(void)
{
struct dma_heap_export_info exp_info;
int i, err = 0;
for (i = 0; i < NUM_ORDERS; i++) {
pools[i] = dmabuf_page_pool_create(order_flags[i], orders[i]);
if (IS_ERR(pools[i])) {
int j;
pr_err("%s: page pool creation failed!\n", __func__);
for (j = 0; j < i; j++)
dmabuf_page_pool_destroy(pools[j]);
return PTR_ERR(pools[i]);
}
}
/* system & mtk_mm heap use same heap show */
exp_info.priv = (void *)&system_heap_priv;
exp_info.name = "system";
exp_info.ops = &system_heap_ops;
sys_heap = dma_heap_add(&exp_info);
if (IS_ERR(sys_heap))
return PTR_ERR(sys_heap);
pr_info("%s add heap[%s] success\n", __func__, exp_info.name);
exp_info.name = "mtk_mm";
exp_info.ops = &mtk_mm_heap_ops;
mtk_mm_heap = dma_heap_add(&exp_info);
if (IS_ERR(mtk_mm_heap))
return PTR_ERR(mtk_mm_heap);
pr_info("%s add heap[%s] success\n", __func__, exp_info.name);
exp_info.name = "system-uncached";
exp_info.ops = &system_uncached_heap_ops;
sys_uncached_heap = dma_heap_add(&exp_info);
if (IS_ERR(sys_uncached_heap))
return PTR_ERR(sys_uncached_heap);
err = set_heap_dev_dma(dma_heap_get_dev(sys_uncached_heap));
if (err)
return err;
mb(); /* make sure we only set allocate after dma_mask is set */
system_uncached_heap_ops.allocate = system_uncached_heap_allocate;
pr_info("%s add heap[%s] success\n", __func__, exp_info.name);
exp_info.name = "mtk_mm-uncached";
exp_info.ops = &mtk_mm_uncached_heap_ops;
mtk_mm_uncached_heap = dma_heap_add(&exp_info);
if (IS_ERR(mtk_mm_uncached_heap))
return PTR_ERR(mtk_mm_uncached_heap);
err = set_heap_dev_dma(dma_heap_get_dev(mtk_mm_uncached_heap));
if (err)
return err;
mb(); /* make sure we only set allocate after dma_mask is set */
mtk_mm_uncached_heap_ops.allocate = mtk_mm_uncached_heap_allocate;
pr_info("%s add heap[%s] success\n", __func__, exp_info.name);
return 0;
}
/* ref code: dma_buf.c, dma_buf_set_name */
long mtk_dma_buf_set_name(struct dma_buf *dmabuf, const char *buf)
{
char *name = kstrndup(buf, DMA_BUF_NAME_LEN, GFP_KERNEL);
long ret = 0;
if (IS_ERR(name))
return PTR_ERR(name);
/* different with dma_buf.c, always enable setting name */
spin_lock(&dmabuf->name_lock);
kfree(dmabuf->name);
dmabuf->name = name;
spin_unlock(&dmabuf->name_lock);
return ret;
} EXPORT_SYMBOL_GPL(mtk_dma_buf_set_name);
int is_mtk_mm_heap_dmabuf(const struct dma_buf *dmabuf)
{
if (dmabuf && dmabuf->ops == &mtk_mm_heap_buf_ops)
return 1;
return 0;
}
EXPORT_SYMBOL_GPL(is_mtk_mm_heap_dmabuf);
int is_system_heap_dmabuf(const struct dma_buf *dmabuf)
{
if (dmabuf && dmabuf->ops == &system_heap_buf_ops)
return 1;
return 0;
}
EXPORT_SYMBOL_GPL(is_system_heap_dmabuf);
hang_dump_cb hang_dump_proc;
EXPORT_SYMBOL_GPL(hang_dump_proc);
module_init(system_heap_create);
MODULE_LICENSE("GPL v2");