// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2021 MediaTek Inc. * * Author: ChiYuan Huang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mtk_battery.h" #include "mtk_gauge.h" #if IS_ENABLED(CONFIG_MTK_AEE_FEATURE) #include #endif #define RG_TM_PASCODE1 0x107 #define RG_ADC_CONFG1 0x1A4 #define VBAT_MON_EN_MASK BIT(5) #define RG_VBAT_MON_RPT 0x19C #define RG_BM_TOP_INT_CON0_SET 0x225 #define RG_BM_TOP_INT_CON0_CLR 0x226 #define RG_BM_TOP_INT_MASK_CON0 0x22D #define RG_BM_TOP_INT_MASK_CON0_SET 0x22E #define RG_BM_TOP_INT_MASK_CON0_CLR 0x22F #define RG_BM_TOP_INT_STATUS0 0x236 #define NUM_IRQ_REG 3 #define RG_FGADC_ANA_ELR4 0x263 #define FG_GAINERR_SEL_MASK GENMASK(1, 0) #define RG_FGADC_CON0 0x26D #define FG_ZCV_DET_EN_MASK BIT(2) #define FG_ZCV_DET_EN_SHIFT 2 #define RG_FGADC_CON2 0x26F #define FG_LATCHDATA_ST_MASK BIT(7) #define FG_N_CHARGE_RST_MASK BIT(3) #define FG_CHARGE_RST_MASK BIT(2) #define FG_TIME_RST_MASK BIT(1) #define RG_FGADC_CON3 0x270 #define FG_SW_CLEAR_MASK BIT(3) #define FG_SW_READ_PRE_MASK BIT(0) #define RG_FGADC_RST_CON0 0x277 #define FG_RSTB_STATUS_MASK BIT(0) #define FG_RSTB_STATUS_SHIFT 0 #define RG_FGADC_CAR_CON0 0x278 #define RG_FGADC_CAR_CON1 0x27A #define RG_FGADC_CARTH_CON0 0x27C #define RG_FGADC_CARTH_CON1 0x27E #define RG_FGADC_CARTH_CON2 0x280 #define RG_FGADC_CARTH_CON3 0x282 #define RG_FGADC_NCAR_CON0 0x284 #define RG_FGADC_NCAR_CON2 0x288 #define FG_N_CHARGE_TH_MASK GENMASK(31, 0) #define RG_FGADC_IAVG_CON0 0x28C #define FG_IAVG_15_00_MASK GENMASK(15, 0) #define RG_FGADC_IAVG_CON1 0x28E #define FG_IAVG_VLD_MASK BIT(0) #define RG_FGADC_IAVG_CON2 0x28F #define FG_IAVG_27_16_MASK GENMASK(11, 0) #define RG_FGADC_IAVG_CON3 0x291 #define RG_FGADC_IAVG_CON5 0x295 #define RG_FGADC_NTER_CON0 0x299 #define FGADC_NTER_MASK GENMASK(29, 0) #define RG_FGADC_ZCV_CON0 0x2AE #define FGADC_ZCV_CON0_RSV BIT(7) #define FG_ZCV_DET_IV_MASK GENMASK(3, 0) #define FG_ZCV_DET_IV_SHIFT 0 #define RG_FGADC_ZCV_CON2 0x2B0 #define RG_FGADC_ZCVTH_CON0 0x2B6 #define FG_ZCV_CAR_TH_MASK GENMASK(30, 0) #define RG_FGADC_R_CON0 0x2E5 #define RG_FGADC_CUR_CON0 0x2E7 #define RG_FGADC_CUR_CON3 0x2ED #define RG_SYSTEM_INFO_CON0 0x2F9 #define HK_TOP_RST_CON0 0x30F #define RESET_MASK BIT(0) #define RG_HK_TOP_STRUP_CON1 0x325 #define HK_STRUP_AUXADC_START_SEL_MASK BIT(2) #define HK_STRUP_AUXADC_START_SEL_SHIFT 2 #define HK_TOP_WKEY 0x328 #define RG_BATON_ANA_MON0 0x388 #define AD_BATON_UNDET_MASK BIT(1) #define RG_AUXADC_ADC_OUT_PWRON_PCHR 0x40C #define AUXADC_ADC_RDY_PWRON_PCHR_MASK BIT(15) #define AUXADC_ADC_OUT_PWRON_PCHR_MASK GENMASK(14, 0) #define RG_AUXADC_ADC_OUT_WAKEUP_PCHR 0x40E #define AUXADC_ADC_RDY_WAKEUP_PCHR_MASK BIT(15) #define AUXADC_ADC_OUT_WAKEUP_PCHR_MASK GENMASK(14, 0) #define RG_AUXADC_ADC_OUT_FGADC_PCHR 0x412 #define AUXADC_ADC_OUT_FGADC_PCHR_MASK GENMASK(14, 0) #define RG_AUXADC_ADC_OUT_BAT_PLUGIN_PCHR 0x414 #define AUXADC_ADC_RDY_BAT_PLUGIN_PCHR_MASK BIT(15) #define AUXADC_ADC_OUT_BAT_PLUGIN_PCHR_MASK GENMASK(14, 0) #define RG_AUXADC_ADC_OUT_NAG 0x418 #define AUXADC_ADC_OUT_NAG_MASK GENMASK(14, 0) #define RG_AUXADC_CON42 0x467 #define AUXADC_ADC_RDY_PWRON_CLR_MASK BIT(3) #define AUXADC_ADC_RDY_BAT_PLUGIN_CLR_MASK BIT(2) #define AUXADC_ADC_RDY_WAKEUP_CLR_MASK BIT(0) #define AUXADC_EFUSE_GAIN_TRIM 0x46E #define AUXADC_EFUSE_OFFSET_TRIM 0x470 #define RG_AUXADC_LBAT2_0 0x4B9 #define AUXADC_LBAT2_EN_MASK BIT(0) #define RG_AUXADC_LBAT2_1 0x4BA #define AUXADC_LBAT2_DEBT_MIN_SEL_MASK GENMASK(5, 4) #define AUXADC_LBAT2_DEBT_MIN_SEL_SHIFT 4 #define AUXADC_LBAT2_DEBT_MAX_SEL_MASK GENMASK(3, 2) #define AUXADC_LBAT2_DEBT_MAX_SEL_SHIFT 2 #define AUXADC_LBAT2_DET_PRD_SEL_MASK GENMASK(1, 0) #define AUXADC_LBAT2_DET_PRD_SEL_SHIFT 0 #define RG_AUXADC_LBAT2_2 0x4BB #define AUXADC_LBAT2_DET_MAX_MASK BIT(1) #define AUXADC_LBAT2_DET_MAX_SHIFT 1 #define AUXADC_LBAT2_IRQ_EN_MAX_MASK BIT(0) #define AUXADC_LBAT2_IRQ_EN_MAX_SHIFT 0 #define RG_AUXADC_LBAT2_3 0x4BC #define AUXADC_LBAT2_VOLT_MAX_MASK GENMASK(11, 0) #define RG_AUXADC_LBAT2_5 0x4BE #define AUXADC_LBAT2_DET_MIN_MASK BIT(1) #define AUXADC_LBAT2_DET_MIN_SHIFT 1 #define AUXADC_LBAT2_IRQ_EN_MIN_MASK BIT(0) #define AUXADC_LBAT2_IRQ_EN_MIN_SHIFT 0 #define RG_AUXADC_LBAT2_6 0x4BF #define AUXADC_LBAT2_VOLT_MIN_MASK GENMASK(11, 0) #define RG_AUXADC_BAT_TEMP_0 0x4C5 #define AUXADC_BAT_TEMP_EN_MASK BIT(0) #define RG_AUXADC_BAT_TEMP_1 0x4C6 #define AUXADC_BAT_TEMP_FROZE_EN_MASK BIT(0) #define RG_AUXADC_BAT_TEMP_2 0x4C7 #define AUXADC_BAT_TEMP_DEBT_MIN_SEL_MASK GENMASK(5, 4) #define AUXADC_BAT_TEMP_DEBT_MIN_SEL_SHIFT 4 #define AUXADC_BAT_TEMP_DEBT_MAX_SEL_MASK GENMASK(3, 2) #define AUXADC_BAT_TEMP_DEBT_MAX_SEL_SHIFT 2 #define AUXADC_BAT_TEMP_DET_PRD_SEL_MASK GENMASK(1, 0) #define AUXADC_BAT_TEMP_DET_PRD_SEL_SHIFT 0 #define RG_AUXADC_BAT_TEMP_3 0x4C8 #define AUXADC_BAT_TEMP_DET_MAX_MASK BIT(1) #define AUXADC_BAT_TEMP_IRQ_EN_MAX_MASK BIT(0) #define RG_AUXADC_BAT_TEMP_4 0x4C9 #define AUXADC_BAT_TEMP_VOLT_MAX_MASK GENMASK(11, 0) #define RG_AUXADC_BAT_TEMP_6 0x4CB #define AUXADC_BAT_TEMP_DET_MIN_MASK BIT(1) #define AUXADC_BAT_TEMP_IRQ_EN_MIN_MASK BIT(0) #define RG_AUXADC_BAT_TEMP_7 0x4CC #define AUXADC_BAT_TEMP_VOLT_MIN_MASK GENMASK(11, 0) #define RG_AUXADC_NAG_0 0x4D2 #define AUXADC_NAG_IRQ_EN_MASK BIT(5) #define AUXADC_NAG_PRD_MASK GENMASK(4, 3) #define AUXADC_NAG_PRD_SHIFT 3 #define AUXADC_NAG_VBAT1_SEL_MASK BIT(2) #define AUXADC_NAG_VBAT1_SEL_SHIFT 2 #define AUXADC_NAG_EN_MASK BIT(0) #define RG_AUXADC_NAG_1 0x4D3 #define AUXADC_NAG_ZCV_MASK GENMASK(14, 0) #define RG_AUXADC_NAG_3 0x4D5 #define AUXADC_NAG_C_DLTV_TH_MASK GENMASK(26, 0) #define RG_AUXADC_NAG_7 0x4D9 #define AUXADC_NAG_CNT_MASK GENMASK(25, 0) #define RG_AUXADC_NAG_11 0x4DD #define RG_AUXADC_NAG_13 0x4DF #define AUXADC_NAG_C_DLTV_MASK GENMASK(26, 0) #define AUXADC_EFUSE_GAIN_ERR 0X579 #define ADC_CONV_TIME_US 2200 #define ADC_VBAT_SCALE 1250 #define ADC_FROM_VBAT_RAW(raw) ((raw) * ADC_VBAT_SCALE / 1000) #define HTOL_THRESHOLD_MAX 20 #define HTOL_THRESHOLD_MIN 5 #define HTOL_CALI_MAX 267 /* mt6359 610.352 uA */ #define UNIT_FGCURRENT 610352 /* CHARGE_LSB 0.085 uAh*/ #define UNIT_CHARGE 85 /* AUXADC */ #define R_VAL_TEMP_2 15 #define R_VAL_TEMP_3 40 #define UNIT_TIME 50 #define UNIT_FG_IAVG 305176 /* IAVG LSB: 305.176 uA */ /* 5mm ohm */ #define UNIT_FGCAR_ZCV 85 /* CHARGE_LSB = 0.085 uAh */ #define VOLTAGE_FULL_RANGES 1840 #define ADC_PRECISE 32768 /* 15 bits */ #define CAR_TO_REG_SHIFT 5 /*coulomb interrupt lsb might be different with coulomb lsb */ #define CAR_TO_REG_FACTOR 0x2E14 /* 1000 * 1000 / CHARGE_LSB */ #define UNIT_FGCAR 174080 /* CHARGE_LSB 0.085 * 2^11 */ enum { CHAN_BAT_VOLT = 0, CHAN_BAT_TEMP, CHAN_PTIM_BAT_VOLT, CHAN_PTIM_R, CHAN_VREF, CHAN_MAX }; enum mt6375_gauge_cic_idx { MT6375_GAUGE_CIC1 = 0, MT6375_GAUGE_CIC2, MT6375_GAUGE_CIC_MAX }; struct mt6375_priv { struct mtk_gauge gauge; struct device *dev; struct regmap *regmap; struct irq_domain *domain; struct irq_chip irq_chip; struct mutex irq_lock; int irq; u8 unmask_buf[NUM_IRQ_REG]; int default_r_fg; u16 gain_err; u16 efuse_gain_err; int offset_trim; int unit_fgcurrent; int unit_charge; int unit_fg_iavg; int unit_fgcar_zcv; }; /************ bat_cali *******************/ #define BAT_CALI_DEVNAME "MT_pmic_adc_cali" /* add for meta tool----------------------------------------- */ #define Get_META_BAT_VOL _IOW('k', 10, int) #define Get_META_BAT_SOC _IOW('k', 11, int) #define Get_META_BAT_CAR_TUNE_VALUE _IOW('k', 12, int) #define Set_META_BAT_CAR_TUNE_VALUE _IOW('k', 13, int) #define Set_BAT_DISABLE_NAFG _IOW('k', 14, int) #define Set_CARTUNE_TO_KERNEL _IOW('k', 15, int) static struct class *bat_cali_class; static int bat_cali_major; static dev_t bat_cali_devno; static struct cdev *bat_cali_cdev; static void gauge_irq_lock(struct irq_data *data) { struct mt6375_priv *priv = irq_data_get_irq_chip_data(data); mutex_lock(&priv->irq_lock); } static void gauge_irq_sync_unlock(struct irq_data *data) { struct mt6375_priv *priv = irq_data_get_irq_chip_data(data); int idx = data->hwirq / 8, bits = BIT(data->hwirq % 8), ret; unsigned int reg; if (priv->unmask_buf[idx] & bits) reg = RG_BM_TOP_INT_CON0_SET + idx * 3; else reg = RG_BM_TOP_INT_CON0_CLR + idx * 3; ret = regmap_write(priv->regmap, reg, bits); if (ret) dev_err(priv->dev, "Failed to set/clr irq con %d\n", data->hwirq); mutex_unlock(&priv->irq_lock); } static void gauge_irq_disable(struct irq_data *data) { struct mt6375_priv *priv = irq_data_get_irq_chip_data(data); priv->unmask_buf[data->hwirq / 8] &= ~BIT(data->hwirq % 8); } static void gauge_irq_enable(struct irq_data *data) { struct mt6375_priv *priv = irq_data_get_irq_chip_data(data); priv->unmask_buf[data->hwirq / 8] |= BIT(data->hwirq % 8); } static int gauge_irq_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hw) { struct mt6375_priv *priv = h->host_data; irq_set_chip_data(virq, priv); irq_set_chip(virq, &priv->irq_chip); irq_set_nested_thread(virq, 1); irq_set_parent(virq, priv->irq); irq_set_noprobe(virq); return 0; } static const struct irq_domain_ops gauge_domain_ops = { .map = gauge_irq_map, .xlate = irq_domain_xlate_onetwocell, }; static irqreturn_t gauge_irq_thread(int irq, void *data) { struct mt6375_priv *priv = data; u8 status_buf[NUM_IRQ_REG], status; static const u8 no_status[NUM_IRQ_REG]; static const u8 mask[NUM_IRQ_REG] = { 0x9F, 0x1B, 0x0D }; bool handled = false; int i, j, ret; ret = regmap_raw_read(priv->regmap, RG_BM_TOP_INT_STATUS0, status_buf, sizeof(status_buf)); if (ret) { dev_err(priv->dev, "Error reading INT status\n"); return IRQ_HANDLED; } if (!memcmp(status_buf, no_status, NUM_IRQ_REG)) return IRQ_HANDLED; /* mask irqs */ for (i = 0; i < NUM_IRQ_REG; i++) { ret = regmap_write(priv->regmap, RG_BM_TOP_INT_MASK_CON0_SET + i * 3, mask[i]); if (ret) dev_err(priv->dev, "Failed to mask irq[%d]\n", i); } for (i = 0; i < NUM_IRQ_REG; i++) { status = status_buf[i] & priv->unmask_buf[i]; if (!status) continue; for (j = 0; j < 8; j++) { if (!(status & BIT(j))) continue; handle_nested_irq(irq_find_mapping(priv->domain, i * 8 + j)); handled = true; } } /* after process, unmask irqs */ for (i = 0; i < NUM_IRQ_REG; i++) { ret = regmap_write(priv->regmap, RG_BM_TOP_INT_MASK_CON0_CLR + i * 3, mask[i]); if (ret) dev_err(priv->dev, "Failed to unmask irq[%d]\n", i); } ret = regmap_raw_write(priv->regmap, RG_BM_TOP_INT_STATUS0, status_buf, sizeof(status_buf)); if (ret) dev_err(priv->dev, "Error clear INT status\n"); return handled ? IRQ_HANDLED : IRQ_NONE; } static int gauge_add_irq_chip(struct mt6375_priv *priv) { int i, ret; for (i = 0; i < NUM_IRQ_REG; i++) { ret = regmap_write(priv->regmap, RG_BM_TOP_INT_CON0_CLR + i * 3, 0xFF); if (ret) { dev_err(priv->dev, "Failed to disable irq con [%d]\n", i); return ret; } ret = regmap_write(priv->regmap, RG_BM_TOP_INT_MASK_CON0 + i * 3, 0); if (ret) { dev_err(priv->dev, "Failed to init irq mask [%d]\n", i); return ret; } } priv->irq_chip.name = dev_name(priv->dev); priv->irq_chip.irq_bus_lock = gauge_irq_lock; priv->irq_chip.irq_bus_sync_unlock = gauge_irq_sync_unlock; priv->irq_chip.irq_disable = gauge_irq_disable; priv->irq_chip.irq_enable = gauge_irq_enable; priv->domain = irq_domain_add_linear(priv->dev->of_node, NUM_IRQ_REG * 8, &gauge_domain_ops, priv); if (!priv->domain) { dev_err(priv->dev, "Failed to create IRQ domain\n"); return -ENOMEM; } ret = request_threaded_irq(priv->irq, NULL, gauge_irq_thread, IRQF_SHARED | IRQF_ONESHOT, dev_name(priv->dev), priv); if (ret) { dev_err(priv->dev, "Failed to request IRQ %d for %s: %d\n", priv->irq, dev_name(priv->dev), ret); goto err_irq; } enable_irq_wake(priv->irq); return 0; err_irq: irq_domain_remove(priv->domain); return ret; } static void gauge_del_irq_chip(struct mt6375_priv *priv) { unsigned int virq; int hwirq; free_irq(priv->irq, priv); for (hwirq = 0; hwirq < NUM_IRQ_REG * 8; hwirq++) { virq = irq_find_mapping(priv->domain, hwirq); if (virq) irq_dispose_mapping(virq); } irq_domain_remove(priv->domain); } static int gauge_get_all_auxadc_channels(struct mt6375_priv *priv) { struct mtk_gauge *gauge = &priv->gauge; const char *adc_names[CHAN_MAX] = { "bat_volt", "bat_temp", "ptim_bat_volt", "ptim_r", "vref" }; struct iio_channel *adc_chan[CHAN_MAX]; int i; for (i = 0; i < CHAN_MAX; i++) { adc_chan[i] = devm_iio_channel_get(priv->dev, adc_names[i]); if (IS_ERR(adc_chan[i])) return PTR_ERR(adc_chan[i]); } /* Filled adc channels into mtk_gauge */ gauge->chan_bat_temp = adc_chan[CHAN_BAT_TEMP]; gauge->chan_bat_voltage = adc_chan[CHAN_BAT_VOLT]; gauge->chan_ptim_bat_voltage = adc_chan[CHAN_PTIM_BAT_VOLT]; gauge->chan_ptim_r = adc_chan[CHAN_PTIM_R]; gauge->chan_bif = adc_chan[CHAN_VREF]; return 0; } static int gauge_get_all_interrupts(struct mt6375_priv *priv) { struct platform_device *pdev = to_platform_device(priv->dev); struct mtk_gauge *gauge = &priv->gauge; const char *irq_names[GAUGE_IRQ_MAX] = { "COULOMB_H", "COULOMB_L", "VBAT2_H", "VBAT2_L", "NAFG", "BAT_OUT", "ZCV", "FG_N_CHARGE_L", "FG_IAVG_H", "FG_IAVG_L", "BAT_TMP_H", "BAT_TMP_L" }; int i, irq_no; for (i = 0; i < GAUGE_IRQ_MAX; i++) { irq_no = platform_get_irq_byname(pdev, irq_names[i]); if (irq_no < 0) return irq_no; irq_set_status_flags(irq_no, IRQ_NOAUTOEN); gauge->irq_no[i] = irq_no; } return 0; } void __weak mtk_battery_netlink_handler(struct sk_buff *skb) { } static signed int reg_to_mv_value(signed int _reg) { long long _reg64 = _reg; int ret; #if defined(__LP64__) || defined(_LP64) _reg64 = (_reg64 * VOLTAGE_FULL_RANGES * R_VAL_TEMP_3) / ADC_PRECISE; #else _reg64 = div_s64(_reg64 * VOLTAGE_FULL_RANGES * R_VAL_TEMP_3, ADC_PRECISE); #endif ret = _reg64; bm_debug("[%s] %lld => %d\n", __func__, _reg64, ret); return ret; } static signed int mv_to_reg_value(signed int _mv) { int ret; long long _reg64 = _mv; #if defined(__LP64__) || defined(_LP64) _reg64 = (_reg64 * ADC_PRECISE) / (VOLTAGE_FULL_RANGES * R_VAL_TEMP_3); #else _reg64 = div_s64((_reg64 * ADC_PRECISE), (VOLTAGE_FULL_RANGES * R_VAL_TEMP_3)); #endif ret = _reg64; if (ret <= 0) { bm_err( "[fg_bat_nafg][%s] mv=%d,%lld => %d,\n", __func__, _mv, _reg64, ret); return ret; } bm_debug("[%s] mv=%d,%lld => %d,\n", __func__, _mv, _reg64, ret); return ret; } static int mv_to_reg_12_temp_value(signed int _reg) { int ret = (_reg * 4096) / (VOLTAGE_FULL_RANGES * R_VAL_TEMP_2); bm_debug("[%s] %d => %d\n", __func__, _reg, ret); return ret; } static int pre_gauge_update(struct mtk_gauge *gauge) { u32 rdata = 0; int i, ret = 0, max_retry_cnt = 5; if (gauge->gm->disableGM30) return ret; ret = regmap_update_bits(gauge->regmap, RG_FGADC_CON3, FG_SW_READ_PRE_MASK, FG_SW_READ_PRE_MASK); if (ret) { pr_notice("%s: failed to set pre read(%d)\n", __func__, ret); return ret; } for (i = 0; i < max_retry_cnt; i++) { ret = regmap_read(gauge->regmap, RG_FGADC_CON2, &rdata); if (ret) { pr_notice("%s: failed to read latch stat(%d)\n", __func__, ret); return ret; } if (rdata & FG_LATCHDATA_ST_MASK) break; mdelay(1); } if (i == max_retry_cnt) { pr_notice("[%s] timeout! last BM[0x6F]=0x%x\n", __func__, rdata); ret = regmap_read(gauge->regmap, RG_FGADC_CON3, &rdata); pr_notice("[%s] BM[0x70]=0x%x, ret:%d\n", __func__, rdata, ret); ret = regmap_read(gauge->regmap, 0x35D, &rdata); pr_notice("[%s] HK1[0x5D]=0x%x, ret:%d\n", __func__, rdata, ret); ret = regmap_read(gauge->regmap, 0x35E, &rdata); pr_notice("[%s] HK1[0x5E]=0x%x, ret:%d\n", __func__, rdata, ret); ret = -ETIMEDOUT; } return ret; } void disable_all_irq(struct mtk_battery *gm) { disable_gauge_irq(gm->gauge, COULOMB_H_IRQ); disable_gauge_irq(gm->gauge, COULOMB_L_IRQ); disable_gauge_irq(gm->gauge, VBAT_H_IRQ); disable_gauge_irq(gm->gauge, VBAT_L_IRQ); disable_gauge_irq(gm->gauge, NAFG_IRQ); disable_gauge_irq(gm->gauge, BAT_PLUGOUT_IRQ); disable_gauge_irq(gm->gauge, ZCV_IRQ); disable_gauge_irq(gm->gauge, FG_N_CHARGE_L_IRQ); disable_gauge_irq(gm->gauge, FG_IAVG_H_IRQ); disable_gauge_irq(gm->gauge, FG_IAVG_L_IRQ); disable_gauge_irq(gm->gauge, BAT_TMP_H_IRQ); disable_gauge_irq(gm->gauge, BAT_TMP_L_IRQ); } static void post_gauge_update(struct mtk_gauge *gauge) { int m = 0; unsigned int regval; int ret = 0; ret = regmap_update_bits(gauge->regmap, RG_FGADC_CON3, FG_SW_CLEAR_MASK | FG_SW_READ_PRE_MASK, FG_SW_CLEAR_MASK); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return; } do { m++; if (m > 1000) { bm_err("[%s] gauge_update_polling timeout 2!\r\n", __func__); break; } ret = regmap_read(gauge->regmap, RG_FGADC_CON2, ®val); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return; } } while (regval & FG_LATCHDATA_ST_MASK); ret = regmap_update_bits(gauge->regmap, RG_FGADC_CON3, FG_SW_CLEAR_MASK, 0); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return; } } static int mv_to_reg_12_value(struct mtk_gauge *gauge, signed int _reg) { int ret = (_reg * 4096) / (VOLTAGE_FULL_RANGES * R_VAL_TEMP_3); bm_debug("[%s] %d => %d\n", __func__, _reg, ret); return ret; } static int reg_to_current(struct mtk_gauge *gauge, unsigned int regval) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); unsigned short uvalue16 = 0; int dvalue, retval; long long temp_value = 0; bool is_charging = true; uvalue16 = (unsigned short) regval; dvalue = (unsigned int) uvalue16; if (dvalue == 0) { temp_value = (long long) dvalue; is_charging = false; } else if (dvalue > 32767) { /* > 0x8000 */ temp_value = (long long) (dvalue - 65535); temp_value = temp_value - (temp_value * 2); is_charging = false; } else { temp_value = (long long) dvalue; } temp_value = temp_value * priv->unit_fgcurrent; #if defined(__LP64__) || defined(_LP64) do_div(temp_value, 100000); #else temp_value = div_s64(temp_value, 100000); #endif retval = (unsigned int) temp_value; bm_debug("[%s] 0x%x 0x%x 0x%x 0x%x 0x%x %d\n", __func__, regval, uvalue16, dvalue, (int)temp_value, retval, is_charging); if (is_charging == false) return -retval; return retval; } static u8 get_rtc_spare0_fg_value(struct mtk_gauge *gauge) { struct nvmem_cell *cell; u8 *buf, data; cell = nvmem_cell_get(&gauge->pdev->dev, "initialization"); if (IS_ERR(cell)) { bm_err("[%s]get rtc cell fail\n", __func__); return 0; } buf = nvmem_cell_read(cell, NULL); nvmem_cell_put(cell); if (IS_ERR(buf)) { bm_err("[%s]read rtc cell fail\n", __func__); return 0; } bm_debug("[%s] val=0x%x, %d\n", __func__, *buf, *buf); data = *buf; kfree(buf); return data; } static void set_rtc_spare0_fg_value(struct mtk_gauge *gauge, u8 val) { struct nvmem_cell *cell; u32 length = 1; int ret; cell = nvmem_cell_get(&gauge->pdev->dev, "initialization"); if (IS_ERR(cell)) { bm_err("[%s]get rtc cell fail\n", __func__); return; } ret = nvmem_cell_write(cell, &val, length); nvmem_cell_put(cell); if (ret != length) bm_err("[%s] write rtc cell fail\n", __func__); } static u8 get_rtc_spare_fg_value(struct mtk_gauge *gauge) { struct nvmem_cell *cell; u8 *buf, data; cell = nvmem_cell_get(&gauge->pdev->dev, "state-of-charge"); if (IS_ERR(cell)) { bm_err("[%s]get rtc cell fail\n", __func__); return 0; } buf = nvmem_cell_read(cell, NULL); nvmem_cell_put(cell); if (IS_ERR(buf)) { bm_err("[%s]read rtc cell fail\n", __func__); return 0; } bm_debug("[%s] val=%d\n", __func__, *buf); data = *buf; kfree(buf); return data; } static void set_rtc_spare_fg_value(struct mtk_gauge *gauge, u8 val) { struct nvmem_cell *cell; u32 length = 1; int ret; cell = nvmem_cell_get(&gauge->pdev->dev, "state-of-charge"); if (IS_ERR(cell)) { bm_err("[%s]get rtc cell fail\n", __func__); return; } ret = nvmem_cell_write(cell, &val, length); nvmem_cell_put(cell); if (ret != length) bm_err("[%s] write rtc cell fail\n", __func__); bm_debug("[%s] val=%d\n", __func__, val); } static void fgauge_read_RTC_boot_status(struct mtk_gauge *gauge) { unsigned int hw_id = 0x6375; u8 spare0_reg = 0; unsigned int spare0_reg_b13 = 0; u8 spare3_reg = 0; int spare3_reg_valid = 0; spare0_reg = get_rtc_spare0_fg_value(gauge); spare3_reg = get_rtc_spare_fg_value(gauge); gauge->hw_status.gspare0_reg = spare0_reg; gauge->hw_status.gspare3_reg = spare3_reg; spare3_reg_valid = (spare3_reg & 0x80) >> 7; if (spare3_reg_valid == 0) gauge->hw_status.rtc_invalid = 1; else gauge->hw_status.rtc_invalid = 0; if (gauge->hw_status.rtc_invalid == 0) { spare0_reg_b13 = (spare0_reg & 0x20) >> 5; if ((hw_id & 0xff00) == 0x3500) gauge->hw_status.is_bat_plugout = spare0_reg_b13; else gauge->hw_status.is_bat_plugout = !spare0_reg_b13; gauge->hw_status.bat_plug_out_time = spare0_reg & 0x1f; } else { gauge->hw_status.is_bat_plugout = 1; gauge->hw_status.bat_plug_out_time = 31; } bm_err("[%s]rtc_invalid %d plugout %d plugout_time %d spare3 0x%x spare0 0x%x hw_id 0x%x\n", __func__, gauge->hw_status.rtc_invalid, gauge->hw_status.is_bat_plugout, gauge->hw_status.bat_plug_out_time, spare3_reg, spare0_reg, hw_id); } static int fgauge_set_info(struct mtk_gauge *gauge, enum gauge_property ginfo, unsigned int value) { u16 regval; int ret; bm_debug("[%s]info:%d v:%d\n", __func__, ginfo, value); ret = regmap_raw_read(gauge->regmap, RG_SYSTEM_INFO_CON0, ®val, sizeof(regval)); if (ret) return ret; switch (ginfo) { case GAUGE_PROP_2SEC_REBOOT: regval = value ? (regval | BIT(0)) : (regval & ~BIT(0)); break; case GAUGE_PROP_PL_CHARGING_STATUS: regval = value ? (regval | BIT(1)) : (regval & ~BIT(1)); break; case GAUGE_PROP_MONITER_PLCHG_STATUS: regval = value ? (regval | BIT(2)) : (regval & ~BIT(2)); break; case GAUGE_PROP_BAT_PLUG_STATUS: regval = value ? (regval | BIT(3)) : (regval & ~BIT(3)); break; case GAUGE_PROP_IS_NVRAM_FAIL_MODE: regval = value ? (regval | BIT(4)) : (regval & ~BIT(4)); break; case GAUGE_PROP_MONITOR_SOFF_VALIDTIME: regval = value ? (regval | BIT(5)) : (regval & ~BIT(5)); break; case GAUGE_PROP_CON0_SOC: regval &= ~GENMASK(15, 9); regval |= ((value / 100) << 9); break; default: return -EINVAL; } return regmap_raw_write(gauge->regmap, RG_SYSTEM_INFO_CON0, ®val, sizeof(regval)); } static int fgauge_get_info(struct mtk_gauge *gauge, enum gauge_property ginfo, int *value) { u16 regval = 0; int ret; ret = regmap_raw_read(gauge->regmap, RG_SYSTEM_INFO_CON0, ®val, sizeof(regval)); if (ret) return ret; switch (ginfo) { case GAUGE_PROP_2SEC_REBOOT: *value = regval & BIT(0); break; case GAUGE_PROP_PL_CHARGING_STATUS: *value = (regval & BIT(1)) >> 1; break; case GAUGE_PROP_MONITER_PLCHG_STATUS: *value = (regval & BIT(2)) >> 2; break; case GAUGE_PROP_BAT_PLUG_STATUS: *value = (regval & BIT(3)) >> 3; break; case GAUGE_PROP_IS_NVRAM_FAIL_MODE: *value = (regval & BIT(4)) >> 4; break; case GAUGE_PROP_MONITOR_SOFF_VALIDTIME: *value = (regval & BIT(5)) >> 5; break; case GAUGE_PROP_CON0_SOC: *value = (regval & GENMASK(15, 9)) >> 9; break; default: return -EINVAL; } bm_debug("[%s]info:%d v:%d\n", __func__, ginfo, *value); return 0; } static unsigned int instant_current_for_car_tune(struct mtk_gauge *gauge) { u16 reg_value = 0; int ret = 0; pre_gauge_update(gauge); ret = regmap_raw_read(gauge->regmap, RG_FGADC_CUR_CON0, ®_value, sizeof(reg_value)); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } post_gauge_update(gauge); bm_err("%s, reg_value=0x%04x\n", __func__, reg_value); return reg_value; } static int calculate_car_tune(struct mtk_gauge *gauge) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); int cali_car_tune; long long sum_all = 0; unsigned long long temp_sum = 0; int avg_cnt = 0; int i; unsigned int uvalue32 = 0; signed int dvalue = 0; long long Temp_Value1 = 0; unsigned long long Temp_Value2 = 0; long long current_from_ADC = 0; bm_err("%s, meta_current=%d,\n", __func__, gauge->hw_status.meta_current); if (gauge->hw_status.meta_current != 0) { for (i = 0; i < CALI_CAR_TUNE_AVG_NUM; i++) { uvalue32 = instant_current_for_car_tune(gauge); if (uvalue32 != 0) { if (uvalue32 <= 0x8000) { Temp_Value1 = (long long)uvalue32; bm_err("[111]uvalue32 %d Temp_Value1 %lld\n", uvalue32, Temp_Value1); } else if (uvalue32 > 0x8000) { Temp_Value1 = (long long) (65535 - uvalue32); bm_err("[222]uvalue32 %d Temp_Value1 %lld\n", uvalue32, Temp_Value1); } sum_all += Temp_Value1; avg_cnt++; /*****************/ bm_err("[333]uvalue32 %d Temp_Value1 %lld sum_all %lld\n", uvalue32, Temp_Value1, sum_all); /*****************/ } mdelay(30); } /*calculate the real world data */ /*current_from_ADC = sum_all / avg_cnt;*/ temp_sum = sum_all; bm_err("[444]sum_all %lld temp_sum %lld avg_cnt %d current_from_ADC %lld\n", sum_all, temp_sum, avg_cnt, current_from_ADC); if (avg_cnt != 0) do_div(temp_sum, avg_cnt); current_from_ADC = temp_sum; bm_err("[555]sum_all %lld temp_sum %lld avg_cnt %d current_from_ADC %lld\n", sum_all, temp_sum, avg_cnt, current_from_ADC); Temp_Value2 = current_from_ADC * priv->unit_fgcurrent; bm_err("[555]Temp_Value2 %lld current_from_ADC %lld priv->unit_fgcurrent %d\n", Temp_Value2, current_from_ADC, priv->unit_fgcurrent); /* Move 100 from denominator to cali_car_tune's numerator */ /*do_div(Temp_Value2, 1000000);*/ do_div(Temp_Value2, 10000); bm_err("[666]Temp_Value2 %lld current_from_ADC %lld priv->unit_fgcurrent %d\n", Temp_Value2, current_from_ADC, priv->unit_fgcurrent); dvalue = (unsigned int) Temp_Value2; /* Auto adjust value */ if (gauge->hw_status.r_fg_value != priv->default_r_fg) dvalue = (dvalue * priv->default_r_fg) / gauge->hw_status.r_fg_value; bm_err("[666]dvalue %d fg_cust_data.r_fg_value %d\n", dvalue, gauge->hw_status.r_fg_value); /* Move 100 from denominator to cali_car_tune's numerator */ /*cali_car_tune = meta_input_cali_current * 1000 / dvalue;*/ if (dvalue != 0) { cali_car_tune = gauge->hw_status.meta_current * 1000 * 100 / dvalue; bm_err("[777]dvalue %d fg_cust_data.r_fg_value %d cali_car_tune %d\n", dvalue, gauge->hw_status.r_fg_value, cali_car_tune); gauge->hw_status.tmp_car_tune = cali_car_tune; bm_err( "[fgauge_meta_cali_car_tune_value][%d] meta:%d, adc:%lld, UNI_FGCUR:%d, r_fg_value:%d\n", cali_car_tune, gauge->hw_status.meta_current, current_from_ADC, priv->unit_fgcurrent, gauge->hw_status.r_fg_value); } return 0; } return 0; } static int info_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { int ret = 0; if (attr->prop == GAUGE_PROP_CAR_TUNE_VALUE && (val > 500 && val < 1500)) { /* send external_current for calculate_car_tune */ gauge->hw_status.meta_current = val; calculate_car_tune(gauge); } else if (attr->prop == GAUGE_PROP_R_FG_VALUE && val != 0) gauge->hw_status.r_fg_value = val; else if (attr->prop == GAUGE_PROP_VBAT2_DETECT_TIME) gauge->hw_status.vbat2_det_time = val; else if (attr->prop == GAUGE_PROP_VBAT2_DETECT_COUNTER) gauge->hw_status.vbat2_det_counter = val; else ret = fgauge_set_info(gauge, attr->prop, val); return ret; } static int info_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { int ret = 0; if (attr->prop == GAUGE_PROP_CAR_TUNE_VALUE) *val = gauge->hw_status.tmp_car_tune; else if (attr->prop == GAUGE_PROP_R_FG_VALUE) *val = gauge->hw_status.r_fg_value; else if (attr->prop == GAUGE_PROP_VBAT2_DETECT_TIME) *val = gauge->hw_status.vbat2_det_time; else if (attr->prop == GAUGE_PROP_VBAT2_DETECT_COUNTER) *val = gauge->hw_status.vbat2_det_counter; else ret = fgauge_get_info(gauge, attr->prop, val); return ret; } static int instant_current(struct mtk_gauge *gauge, int *val, enum mt6375_gauge_cic_idx cic_idx) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); unsigned int dist_reg = 0; u16 reg_value = 0; int dvalue = 0; int r_fg_value = 0; int car_tune_value = 0; int ret = 0; int vbat_p = 0, ibat_p = 0; u32 rdata = 0, rdata2 = 0; bool latch_timeout = false; r_fg_value = gauge->hw_status.r_fg_value; car_tune_value = gauge->gm->fg_cust_data.car_tune_value; ret = pre_gauge_update(gauge); if (ret == -ETIMEDOUT) latch_timeout = true; switch (cic_idx) { case MT6375_GAUGE_CIC1: dist_reg = RG_FGADC_CUR_CON0; break; case MT6375_GAUGE_CIC2: dist_reg = RG_FGADC_CUR_CON3; break; default: post_gauge_update(gauge); return -EINVAL; } ret = regmap_raw_read(gauge->regmap, dist_reg, ®_value, sizeof(reg_value)); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } post_gauge_update(gauge); dvalue = reg_to_current(gauge, reg_value); /* Auto adjust value */ if (r_fg_value != priv->default_r_fg && r_fg_value != 0) dvalue = (dvalue * priv->default_r_fg) / r_fg_value; dvalue = ((dvalue * car_tune_value) / 1000); *val = dvalue; if (latch_timeout) { pr_notice("[%s] read cic1 with external 32k failed\n", __func__); aee_kernel_warning("BATTERY", "read cic1 failed"); ret = iio_read_channel_attribute(gauge->chan_ptim_bat_voltage, &vbat_p, &ibat_p, IIO_CHAN_INFO_PROCESSED); pr_notice("[%s] ptim vbat=%d, ibat=%d, ret=%d\n", __func__, vbat_p, ibat_p, ret); ret = regmap_read(gauge->regmap, RG_FGADC_CON2, &rdata); ret = regmap_read(gauge->regmap, RG_FGADC_CON3, &rdata2); pr_notice("[%s] BM[0ax6F,70]=0x%x,0x%x\n", __func__, rdata, rdata2); ret = regmap_update_bits(gauge->regmap, 0x110, 0x10, 0x10); pre_gauge_update(gauge); ret = regmap_raw_read(gauge->regmap, RG_FGADC_CUR_CON0, ®_value, sizeof(reg_value)); post_gauge_update(gauge); ret = regmap_update_bits(gauge->regmap, 0x110, 0x10, 0x00); dvalue = reg_to_current(gauge, reg_value); pr_notice("[%s] internal 32k cic1 = %d, ret:%d\n", __func__, dvalue, ret); } return ret; } static int read_hw_ocv_6375_plug_in(struct mtk_gauge *gauge) { signed int adc_rdy = 0; signed int adc_result_reg = 0; signed int adc_result = 0; u16 regval = 0; unsigned int sel = 0; regmap_raw_read(gauge->regmap, RG_AUXADC_ADC_OUT_BAT_PLUGIN_PCHR, ®val, sizeof(regval)); adc_rdy = regval & AUXADC_ADC_RDY_BAT_PLUGIN_PCHR_MASK; adc_result_reg = regval & AUXADC_ADC_OUT_BAT_PLUGIN_PCHR_MASK; regmap_read(gauge->regmap, RG_HK_TOP_STRUP_CON1, &sel); sel = (sel & HK_STRUP_AUXADC_START_SEL_MASK) >> HK_STRUP_AUXADC_START_SEL_SHIFT; adc_result = reg_to_mv_value(adc_result_reg); bm_err("[oam] %s (pchr): adc_result_reg=%d, adc_result=%d, start_sel=%d, rdy=%d\n", __func__, adc_result_reg, adc_result, sel, adc_rdy); if (adc_rdy) { regmap_update_bits(gauge->regmap, RG_AUXADC_CON42, AUXADC_ADC_RDY_BAT_PLUGIN_CLR_MASK, AUXADC_ADC_RDY_BAT_PLUGIN_CLR_MASK); mdelay(1); regmap_update_bits(gauge->regmap, RG_AUXADC_CON42, AUXADC_ADC_RDY_BAT_PLUGIN_CLR_MASK, 0); } return adc_result; } static int read_hw_ocv_6375_power_on(struct mtk_gauge *gauge) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); signed int adc_result_rdy = 0; signed int adc_result_reg = 0; signed int adc_result = 0; u16 regval = 0; int offset_trim = priv->offset_trim; unsigned int sel = 0, data; bool is_ship_rst; regmap_raw_read(gauge->regmap, RG_AUXADC_ADC_OUT_PWRON_PCHR, ®val, sizeof(regval)); adc_result_rdy = regval & AUXADC_ADC_RDY_PWRON_PCHR_MASK; adc_result_reg = regval & AUXADC_ADC_OUT_PWRON_PCHR_MASK; regmap_read(gauge->regmap, RG_HK_TOP_STRUP_CON1, &sel); sel = (sel & HK_STRUP_AUXADC_START_SEL_MASK) >> HK_STRUP_AUXADC_START_SEL_SHIFT; regmap_read(gauge->regmap, RG_FGADC_ZCV_CON0, &data); is_ship_rst = data & FGADC_ZCV_CON0_RSV ? true : false; if (is_ship_rst) { bm_err("%s: before cali, is_ship_rst:%d, offset_trim:0x%x, gain_err:0x%x, adc_result_reg:0x%x\n", __func__, is_ship_rst, offset_trim, priv->gain_err, adc_result_reg); adc_result_reg = adc_result_reg * (ADC_PRECISE + priv->gain_err) / ADC_PRECISE + offset_trim; bm_err("%s: after cali, adc_result_reg:0x%x\n", __func__, adc_result_reg); } adc_result = reg_to_mv_value(adc_result_reg); bm_err("[oam] %s (pchr) : adc_result_reg=%d, adc_result=%d, start_sel=%d, rdy=%d\n", __func__, adc_result_reg, adc_result, sel, adc_result_rdy); if (adc_result_rdy) { regmap_update_bits(gauge->regmap, RG_AUXADC_CON42, AUXADC_ADC_RDY_PWRON_CLR_MASK, AUXADC_ADC_RDY_PWRON_CLR_MASK); mdelay(1); regmap_update_bits(gauge->regmap, RG_AUXADC_CON42, AUXADC_ADC_RDY_PWRON_CLR_MASK, 0); } return adc_result; } static int read_hw_ocv_6375_before_chgin(struct mtk_gauge *gauge) { signed int adc_result_rdy = 0; signed int adc_result_reg = 0; signed int adc_result = 0; u16 regval = 0; unsigned int sel = 0; regmap_raw_read(gauge->regmap, RG_AUXADC_ADC_OUT_WAKEUP_PCHR, ®val, sizeof(regval)); adc_result_rdy = regval & AUXADC_ADC_RDY_WAKEUP_PCHR_MASK; adc_result_reg = regval & AUXADC_ADC_OUT_WAKEUP_PCHR_MASK; regmap_read(gauge->regmap, RG_HK_TOP_STRUP_CON1, &sel); sel = (sel & HK_STRUP_AUXADC_START_SEL_MASK) >> HK_STRUP_AUXADC_START_SEL_SHIFT; adc_result = reg_to_mv_value(adc_result_reg); bm_err("[oam] %s (pchr) : adc_result_reg=%d, adc_result=%d, start_sel=%d, rdy=%d\n", __func__, adc_result_reg, adc_result, sel, adc_result_rdy); if (adc_result_rdy) { regmap_update_bits(gauge->regmap, RG_AUXADC_CON42, AUXADC_ADC_RDY_WAKEUP_CLR_MASK, AUXADC_ADC_RDY_WAKEUP_CLR_MASK); mdelay(1); regmap_update_bits(gauge->regmap, RG_AUXADC_CON42, AUXADC_ADC_RDY_WAKEUP_CLR_MASK, 0); } return adc_result; } static int read_hw_ocv_6375_power_on_rdy(struct mtk_gauge *gauge) { u16 regval = 0; int pon_rdy = 0; regmap_raw_read(gauge->regmap, RG_AUXADC_ADC_OUT_PWRON_PCHR, ®val, sizeof(regval)); pon_rdy = (regval & AUXADC_ADC_RDY_PWRON_PCHR_MASK) ? 1 : 0; bm_err("[%s] pwron_PCHR_rdy %d\n", __func__, pon_rdy); return pon_rdy; } static void switch_nafg_period(int _prd, int *value) { if (_prd >= 1 && _prd < 5) *value = 0; else if (_prd >= 5 && _prd < 10) *value = 1; else if (_prd >= 10 && _prd < 20) *value = 2; else if (_prd >= 20) *value = 3; } static void fgauge_set_nafg_intr_internal(struct mtk_gauge *gauge, int _prd, int _zcv_mv, int _thr_mv) { u32 NAG_C_DLTV_Threashold; int period = 0; u16 regval = 0; gauge->zcv_reg = mv_to_reg_value(_zcv_mv); gauge->thr_reg = mv_to_reg_value(_thr_mv); if (gauge->thr_reg >= 32768) { bm_err("[%s]nag_c_dltv_thr mv=%d ,thr_reg=%d,limit thr_reg to 32767\n", __func__, _thr_mv, gauge->thr_reg); gauge->thr_reg = 32767; } regval = gauge->zcv_reg & AUXADC_NAG_ZCV_MASK; regmap_raw_write(gauge->regmap, RG_AUXADC_NAG_1, ®val, sizeof(regval)); NAG_C_DLTV_Threashold = gauge->thr_reg & AUXADC_NAG_C_DLTV_TH_MASK; regmap_raw_write(gauge->regmap, RG_AUXADC_NAG_3, &NAG_C_DLTV_Threashold, sizeof(NAG_C_DLTV_Threashold)); switch_nafg_period(_prd, &period); regmap_update_bits(gauge->regmap, RG_AUXADC_NAG_0, AUXADC_NAG_PRD_MASK | AUXADC_NAG_VBAT1_SEL_MASK, period << AUXADC_NAG_PRD_SHIFT | 0 << AUXADC_NAG_VBAT1_SEL_SHIFT); bm_debug("[fg_bat_nafg][fgauge_set_nafg_interrupt_internal] time[%d] zcv[%d:%d] thr[%d:%d] 26_0[0x%x]\n", _prd, _zcv_mv, gauge->zcv_reg, _thr_mv, gauge->thr_reg, NAG_C_DLTV_Threashold); } static int get_nafg_vbat(struct mtk_gauge *gauge) { u16 nag_vbat_reg = 0; unsigned int vbat_val; int nag_vbat_mv, i = 0; do { regmap_raw_read(gauge->regmap, RG_AUXADC_ADC_OUT_NAG, &nag_vbat_reg, sizeof(nag_vbat_reg)); if (nag_vbat_reg & BIT(15)) break; msleep(30); i++; } while (i <= 5); vbat_val = nag_vbat_reg & AUXADC_ADC_OUT_NAG_MASK; nag_vbat_mv = reg_to_mv_value(vbat_val); return nag_vbat_mv; } static void fgauge_set_zcv_intr_internal(struct mtk_gauge *gauge_dev, int fg_zcv_det_time, int fg_zcv_car_th) { struct mt6375_priv *priv = container_of(gauge_dev, struct mt6375_priv, gauge); long long fg_zcv_car_th_reg = fg_zcv_car_th; u32 fg_zcv_car_th_regval; fg_zcv_car_th_reg = (fg_zcv_car_th_reg * 100 * 1000); #if defined(__LP64__) || defined(_LP64) do_div(fg_zcv_car_th_reg, priv->unit_fgcar_zcv); #else fg_zcv_car_th_reg = div_s64(fg_zcv_car_th_reg, priv->unit_fgcar_zcv); #endif if (gauge_dev->hw_status.r_fg_value != priv->default_r_fg) #if defined(__LP64__) || defined(_LP64) fg_zcv_car_th_reg = (fg_zcv_car_th_reg * gauge_dev->hw_status.r_fg_value) / priv->default_r_fg; #else fg_zcv_car_th_reg = div_s64(fg_zcv_car_th_reg * gauge_dev->hw_status.r_fg_value, priv->default_r_fg); #endif #if defined(__LP64__) || defined(_LP64) fg_zcv_car_th_reg = ((fg_zcv_car_th_reg * 1000) / gauge_dev->gm->fg_cust_data.car_tune_value); #else fg_zcv_car_th_reg = div_s64((fg_zcv_car_th_reg * 1000), gauge_dev->gm->fg_cust_data.car_tune_value); #endif regmap_update_bits(gauge_dev->regmap, RG_FGADC_ZCV_CON0, FG_ZCV_DET_IV_MASK, fg_zcv_det_time << FG_ZCV_DET_IV_SHIFT); fg_zcv_car_th_regval = fg_zcv_car_th_reg & FG_ZCV_CAR_TH_MASK; regmap_raw_write(gauge_dev->regmap, RG_FGADC_ZCVTH_CON0, &fg_zcv_car_th_regval, sizeof(fg_zcv_car_th_regval)); bm_debug("[FG_ZCV_INT][%s] det_time %d mv %d reg %lld 30_00 0x%x\n", __func__, fg_zcv_det_time, fg_zcv_car_th, fg_zcv_car_th_reg, fg_zcv_car_th_regval); } static void read_fg_hw_info_ncar(struct mtk_gauge *gauge_dev) { struct mt6375_priv *priv = container_of(gauge_dev, struct mt6375_priv, gauge); unsigned int uvalue32_NCAR = 0; unsigned int uvalue32_NCAR_MSB = 0; u32 temp_NCAR = 0; signed int dvalue_NCAR = 0; long long Temp_Value = 0; regmap_raw_read(gauge_dev->regmap, RG_FGADC_NCAR_CON0, &temp_NCAR, sizeof(temp_NCAR)); uvalue32_NCAR = temp_NCAR & ~BIT(31); uvalue32_NCAR_MSB = temp_NCAR & BIT(31); /*calculate the real world data */ dvalue_NCAR = (signed int)uvalue32_NCAR; if (uvalue32_NCAR == 0) { Temp_Value = 0; } else if (uvalue32_NCAR_MSB) { /* dis-charging */ Temp_Value = (long long)(dvalue_NCAR - 0x7fffffff); /* keep negative value */ Temp_Value = Temp_Value - (Temp_Value * 2); } else { /*charging */ Temp_Value = (long long)dvalue_NCAR; } /* 0.1 mAh */ #if defined(__LP64__) || defined(_LP64) Temp_Value = Temp_Value * priv->unit_charge / 1000; #else Temp_Value = div_s64(Temp_Value * priv->unit_charge, 1000); #endif #if defined(__LP64__) || defined(_LP64) do_div(Temp_Value, 10); Temp_Value = Temp_Value + 5; do_div(Temp_Value, 10); #else Temp_Value = div_s64(Temp_Value, 10); Temp_Value = Temp_Value + 5; Temp_Value = div_s64(Temp_Value, 10); #endif if (uvalue32_NCAR_MSB) dvalue_NCAR = (signed int)(Temp_Value - (Temp_Value * 2)); else dvalue_NCAR = (signed int)Temp_Value; /*Auto adjust value*/ if (gauge_dev->hw_status.r_fg_value != priv->default_r_fg) dvalue_NCAR = (dvalue_NCAR * priv->default_r_fg) / gauge_dev->hw_status.r_fg_value; gauge_dev->fg_hw_info.ncar = ((dvalue_NCAR * gauge_dev->gm->fg_cust_data.car_tune_value) / 1000); } static int fgauge_get_time(struct mtk_gauge *gauge_dev, unsigned int *ptime) { unsigned int ret_time; u32 time_regval = 0; long long time = 0; pre_gauge_update(gauge_dev); regmap_raw_read(gauge_dev->regmap, RG_FGADC_NTER_CON0, &time_regval, sizeof(time_regval)); time = time_regval & FGADC_NTER_MASK; #if defined(__LP64__) || defined(_LP64) time = time * UNIT_TIME / 100; #else time = div_s64(time * UNIT_TIME, 100); #endif ret_time = time; bm_debug("[%s] regval:0x%x rtime:0x%llx 0x%x!\r\n", __func__, time_regval, time, ret_time); post_gauge_update(gauge_dev); *ptime = ret_time; return 0; } static int nafg_check_corner(struct mtk_gauge *gauge) { int nag_vbat = 0; int setto_cdltv_thr_mv = 0; int get_c_dltv_mv = 0; u32 nag_c_dltv_value = 0; signed int nag_c_dltv_reg_value; bool bcheckbit10; int nag_zcv = gauge->nafg_zcv_mv; setto_cdltv_thr_mv = gauge->nafg_c_dltv_mv; /*AUXADC_NAG_7*/ regmap_raw_read(gauge->regmap, RG_AUXADC_NAG_13, &nag_c_dltv_value, sizeof(nag_c_dltv_value)); nag_c_dltv_value &= AUXADC_NAG_C_DLTV_MASK; bcheckbit10 = nag_c_dltv_value & BIT(26); nag_c_dltv_reg_value = nag_c_dltv_value; if (bcheckbit10) nag_c_dltv_reg_value |= 0xF8000000; get_c_dltv_mv = reg_to_mv_value(nag_c_dltv_reg_value); nag_vbat = get_nafg_vbat(gauge); bm_debug("%s:nag_vbat:%d nag_zcv:%d get_c_dltv_mv:%d setto_cdltv_thr_mv:%d, RG[0x%x]\n", __func__, nag_vbat, nag_zcv, get_c_dltv_mv, setto_cdltv_thr_mv, nag_c_dltv_value); return 0; } static int coulomb_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); unsigned int uvalue32_car = 0; unsigned int uvalue32_car_msb = 0; u32 temp_car = 0; signed int dvalue_CAR = 0; long long temp_value = 0; int r_fg_value; int car_tune_value; int ret = 0; r_fg_value = gauge->hw_status.r_fg_value; car_tune_value = gauge->gm->fg_cust_data.car_tune_value; pre_gauge_update(gauge); ret = regmap_raw_read(gauge->regmap, RG_FGADC_CAR_CON0, &temp_car, sizeof(temp_car)); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } post_gauge_update(gauge); uvalue32_car = temp_car & 0x7fffffff; uvalue32_car_msb = (temp_car & BIT(31)) >> 31; /* calculate the real world data */ dvalue_CAR = (signed int) uvalue32_car; if (uvalue32_car == 0) { temp_value = 0; } else if (uvalue32_car_msb) { /* dis-charging */ temp_value = (long long) (dvalue_CAR - 0x7fffffff); /* keep negative value */ temp_value = temp_value - (temp_value * 2); } else { /*charging */ temp_value = (long long) dvalue_CAR; } #if defined(__LP64__) || defined(_LP64) temp_value = temp_value * priv->unit_charge / 1000; #else temp_value = div_s64(temp_value * priv->unit_charge, 1000); #endif #if defined(__LP64__) || defined(_LP64) do_div(temp_value, 10); temp_value = temp_value + 5; do_div(temp_value, 10); #else temp_value = div_s64(temp_value, 10); temp_value = temp_value + 5; temp_value = div_s64(temp_value, 10); #endif if (uvalue32_car_msb) dvalue_CAR = (signed int) (temp_value - (temp_value * 2)); /* keep negative value */ else dvalue_CAR = (signed int) temp_value; bm_debug("[%s]l:0x%x h:0x%x val:%d msb:%d car:%d\n", __func__, temp_car & 0xFFFF, (temp_car & 0xFFFF0000) >> 16, uvalue32_car, uvalue32_car_msb, dvalue_CAR); /*Auto adjust value*/ if (r_fg_value != priv->default_r_fg && r_fg_value != 0) { bm_debug("[%s] Auto adjust value deu to the Rfg is %d\n Ori CAR=%d", __func__, r_fg_value, dvalue_CAR); dvalue_CAR = (dvalue_CAR * priv->default_r_fg) / r_fg_value; bm_debug("[%s] new CAR=%d\n", __func__, dvalue_CAR); } dvalue_CAR = (dvalue_CAR * car_tune_value) / 1000; bm_debug("[%s] CAR=%d r_fg_value=%d car_tune_value=%d\n", __func__, dvalue_CAR, r_fg_value, car_tune_value); *val = dvalue_CAR; return 0; } static int average_current_get(struct mtk_gauge *gauge_dev, struct mtk_gauge_sysfs_field_info *attr, int *data) { struct mt6375_priv *priv = container_of(gauge_dev, struct mt6375_priv, gauge); long long fg_iavg_reg = 0; long long fg_iavg_reg_tmp = 0; long long fg_iavg_ma = 0; u16 fg_iavg_reg_27_16 = 0; u16 fg_iavg_reg_15_00 = 0; int sign_bit = 0; int is_bat_charging; int iavg_vld = 0; int r_fg_value, car_tune_value; int ret = 0; r_fg_value = gauge_dev->hw_status.r_fg_value; car_tune_value = gauge_dev->gm->fg_cust_data.car_tune_value; pre_gauge_update(gauge_dev); ret = regmap_read(gauge_dev->regmap, RG_FGADC_IAVG_CON1, &iavg_vld); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } iavg_vld = iavg_vld & FG_IAVG_VLD_MASK; if (iavg_vld) { ret = regmap_raw_read(gauge_dev->regmap, RG_FGADC_IAVG_CON2, &fg_iavg_reg_27_16, sizeof(fg_iavg_reg_27_16)); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } fg_iavg_reg_27_16 &= FG_IAVG_27_16_MASK; ret = regmap_raw_read(gauge_dev->regmap, RG_FGADC_IAVG_CON0, &fg_iavg_reg_15_00, sizeof(fg_iavg_reg_15_00)); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } fg_iavg_reg_15_00 &= FG_IAVG_15_00_MASK; fg_iavg_reg = fg_iavg_reg_27_16; fg_iavg_reg = ((long long)fg_iavg_reg << 16) + fg_iavg_reg_15_00; sign_bit = (fg_iavg_reg_27_16 & BIT(11)) >> 11; if (sign_bit) { fg_iavg_reg_tmp = fg_iavg_reg; /*fg_iavg_reg = fg_iavg_reg_tmp - 0xfffffff - 1;*/ fg_iavg_reg = 0xfffffff - fg_iavg_reg_tmp + 1; } is_bat_charging = sign_bit ? 0 : 1; fg_iavg_ma = fg_iavg_reg * priv->unit_fg_iavg * car_tune_value; bm_debug( "[fg_get_current_iavg] fg_iavg_ma %lld fg_iavg_reg %lld fg_iavg_reg_tmp %lld\n", fg_iavg_ma, fg_iavg_reg, fg_iavg_reg_tmp); #if defined(__LP64__) || defined(_LP64) do_div(fg_iavg_ma, 1000000); #else fg_iavg_ma = div_s64(fg_iavg_ma, 1000000); #endif if (r_fg_value != priv->default_r_fg && r_fg_value != 0) { #if defined(__LP64__) || defined(_LP64) fg_iavg_ma = (fg_iavg_ma * priv->default_r_fg / r_fg_value); #else fg_iavg_ma = div_s64(fg_iavg_ma * priv->default_r_fg, r_fg_value); #endif } #if defined(__LP64__) || defined(_LP64) do_div(fg_iavg_ma, 100); #else fg_iavg_ma = div_s64(fg_iavg_ma, 100); #endif bm_debug("[fg_get_current_iavg] fg_iavg_ma %lld\n", fg_iavg_ma); if (sign_bit) fg_iavg_ma = 0 - fg_iavg_ma; bm_debug( "[fg_get_current_iavg] fg_iavg_ma %lld fg_iavg_reg %lld r_fg_value %d 27_16 0x%x 15_00 0x%x\n", fg_iavg_ma, fg_iavg_reg, r_fg_value, fg_iavg_reg_27_16, fg_iavg_reg_15_00); gauge_dev->fg_hw_info.current_avg = fg_iavg_ma; gauge_dev->fg_hw_info.current_avg_sign = sign_bit; bm_debug("[fg_get_current_iavg] PMIC_FG_IAVG_VLD == 1\n"); } else { ret = instant_current(gauge_dev, &gauge_dev->fg_hw_info.current_1, MT6375_GAUGE_CIC1); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } gauge_dev->fg_hw_info.current_avg = gauge_dev->fg_hw_info.current_1; if (gauge_dev->fg_hw_info.current_1 < 0) gauge_dev->fg_hw_info.current_avg_sign = 1; bm_debug("[fg_get_current_iavg] PMIC_FG_IAVG_VLD != 1, avg %d, current_1 %d\n", gauge_dev->fg_hw_info.current_avg, gauge_dev->fg_hw_info.current_1); } post_gauge_update(gauge_dev); *data = gauge_dev->fg_hw_info.current_avg; gauge_dev->fg_hw_info.current_avg_valid = iavg_vld; bm_debug("[fg_get_current_iavg] %d %d\n", *data, iavg_vld); return 0; } static int bat_temp_froze_en_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_1, AUXADC_BAT_TEMP_FROZE_EN_MASK, val ? AUXADC_BAT_TEMP_FROZE_EN_MASK : 0); return 0; } static int bat_tmp_lt_threshold_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int threshold) { int tmp_int_lt = mv_to_reg_12_temp_value(threshold); u16 regval; regval = tmp_int_lt & AUXADC_BAT_TEMP_VOLT_MAX_MASK; /* max is low temp */ regmap_raw_write(gauge->regmap, RG_AUXADC_BAT_TEMP_4, ®val, sizeof(regval)); bm_debug("[%s]mv:%d reg:%d\n", __func__, threshold, tmp_int_lt); return 0; } static int bat_tmp_ht_threshold_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int threshold) { int tmp_int_ht = mv_to_reg_12_temp_value(threshold); u16 regval; regval = tmp_int_ht & AUXADC_BAT_TEMP_VOLT_MIN_MASK; /* min is high temp */ regmap_raw_write(gauge->regmap, RG_AUXADC_BAT_TEMP_7, ®val, sizeof(regval)); bm_debug("[%s]mv:%d reg:%d\n", __func__, threshold, tmp_int_ht); return 0; } static int en_bat_tmp_lt_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int en) { if (en == 0) { disable_gauge_irq(gauge, BAT_TMP_L_IRQ); regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_3, AUXADC_BAT_TEMP_DET_MAX_MASK | AUXADC_BAT_TEMP_IRQ_EN_MAX_MASK, 0); regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_0, AUXADC_BAT_TEMP_EN_MASK, 0); } else { /* unit: 0x10 = 2, means 5 second */ regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_2, AUXADC_BAT_TEMP_DET_PRD_SEL_MASK, 2 << AUXADC_BAT_TEMP_DET_PRD_SEL_SHIFT); /* debounce 0x10 = 2 , means 4 times*/ /* 5s * 4 times = 20s to issue bat_temp interrupt */ regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_2, AUXADC_BAT_TEMP_DEBT_MAX_SEL_MASK, 2 << AUXADC_BAT_TEMP_DEBT_MAX_SEL_SHIFT); enable_gauge_irq(gauge, BAT_TMP_L_IRQ); regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_3, AUXADC_BAT_TEMP_DET_MAX_MASK | AUXADC_BAT_TEMP_IRQ_EN_MAX_MASK, AUXADC_BAT_TEMP_DET_MAX_MASK | AUXADC_BAT_TEMP_IRQ_EN_MAX_MASK); regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_0, AUXADC_BAT_TEMP_EN_MASK, AUXADC_BAT_TEMP_EN_MASK); } bm_debug("[%s]en:%d\n", __func__, en); return 0; } static int en_bat_tmp_ht_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int en) { if (en == 0) { disable_gauge_irq(gauge, BAT_TMP_H_IRQ); regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_6, AUXADC_BAT_TEMP_DET_MIN_MASK | AUXADC_BAT_TEMP_IRQ_EN_MIN_MASK, 0); regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_0, AUXADC_BAT_TEMP_EN_MASK, 0); } else { /* unit: 0x10 = 2, means 5 second */ regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_2, AUXADC_BAT_TEMP_DET_PRD_SEL_MASK, 2 << AUXADC_BAT_TEMP_DET_PRD_SEL_SHIFT); /* debounce 0x10 = 2 , means 4 times*/ /* 5s * 4 times = 20s to issue bat_temp interrupt */ regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_2, AUXADC_BAT_TEMP_DEBT_MIN_SEL_MASK, 2 << AUXADC_BAT_TEMP_DEBT_MIN_SEL_SHIFT); enable_gauge_irq(gauge, BAT_TMP_H_IRQ); regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_6, AUXADC_BAT_TEMP_DET_MIN_MASK | AUXADC_BAT_TEMP_IRQ_EN_MIN_MASK, AUXADC_BAT_TEMP_DET_MIN_MASK | AUXADC_BAT_TEMP_IRQ_EN_MIN_MASK); regmap_update_bits(gauge->regmap, RG_AUXADC_BAT_TEMP_0, AUXADC_BAT_TEMP_EN_MASK, AUXADC_BAT_TEMP_EN_MASK); } bm_debug("[%s]en:%d\n", __func__, en); return 0; } static int event_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int event) { if (event == EVT_INT_NAFG_CHECK) nafg_check_corner(gauge); return 0; } static signed int fg_set_iavg_intr(struct mtk_gauge *gauge_dev, void *data) { struct mt6375_priv *priv = container_of(gauge_dev, struct mt6375_priv, gauge); int iavg_gap = *(unsigned int *) (data); int iavg; long long iavg_ht, iavg_lt; long long fg_iavg_reg_ht, fg_iavg_reg_lt; int fg_iavg_lth_28_16, fg_iavg_lth_15_00; int fg_iavg_hth_28_16, fg_iavg_hth_15_00; u32 regval; int ret = 0; ret = average_current_get(gauge_dev, NULL, &iavg); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } iavg_ht = abs(iavg) + iavg_gap; iavg_lt = abs(iavg) - iavg_gap; if (iavg_lt <= 0) iavg_lt = 0; gauge_dev->hw_status.iavg_ht = iavg_ht; gauge_dev->hw_status.iavg_lt = iavg_lt; /* reverse for IAVG */ /* fg_iavg_ma * 100 * fg_cust_data.r_fg_value / DEFAULT_RFG * 1000 * 1000 */ /* / fg_cust_data.car_tune_value / priv->unit_fg_iavg = fg_iavg_reg */ fg_iavg_reg_ht = iavg_ht * 100; if ((gauge_dev->hw_status.r_fg_value != priv->default_r_fg) && priv->default_r_fg != 0) { fg_iavg_reg_ht = fg_iavg_reg_ht * gauge_dev->hw_status.r_fg_value; #if defined(__LP64__) || defined(_LP64) do_div(fg_iavg_reg_ht, priv->default_r_fg); #else fg_iavg_reg_ht = div_s64(fg_iavg_reg_ht, priv->default_r_fg); #endif } fg_iavg_reg_ht = fg_iavg_reg_ht * 1000000; if (priv->unit_fg_iavg != 0 && gauge_dev->gm->fg_cust_data.car_tune_value != 0) { #if defined(__LP64__) || defined(_LP64) do_div(fg_iavg_reg_ht, priv->unit_fg_iavg); do_div(fg_iavg_reg_ht, gauge_dev->gm->fg_cust_data.car_tune_value); #else fg_iavg_reg_ht = div_s64(fg_iavg_reg_ht, priv->unit_fg_iavg); fg_iavg_reg_ht = div_s64(fg_iavg_reg_ht, gauge_dev->gm->fg_cust_data.car_tune_value); #endif } fg_iavg_reg_lt = iavg_lt * 100; if ((gauge_dev->hw_status.r_fg_value != priv->default_r_fg) && priv->default_r_fg != 0) { fg_iavg_reg_lt = fg_iavg_reg_lt * gauge_dev->hw_status.r_fg_value; #if defined(__LP64__) || defined(_LP64) do_div(fg_iavg_reg_lt, priv->default_r_fg); #else fg_iavg_reg_lt = div_s64(fg_iavg_reg_lt, priv->default_r_fg); #endif } fg_iavg_reg_lt = fg_iavg_reg_lt * 1000000; if (priv->unit_fg_iavg != 0 && gauge_dev->gm->fg_cust_data.car_tune_value != 0) { #if defined(__LP64__) || defined(_LP64) do_div(fg_iavg_reg_lt, priv->unit_fg_iavg); do_div(fg_iavg_reg_lt, gauge_dev->gm->fg_cust_data.car_tune_value); #else fg_iavg_reg_lt = div_s64(fg_iavg_reg_lt, priv->unit_fg_iavg); fg_iavg_reg_lt = div_s64(fg_iavg_reg_lt, gauge_dev->gm->fg_cust_data.car_tune_value); #endif } fg_iavg_lth_28_16 = (fg_iavg_reg_lt & 0x1fff0000) >> 16; fg_iavg_lth_15_00 = fg_iavg_reg_lt & 0xffff; fg_iavg_hth_28_16 = (fg_iavg_reg_ht & 0x1fff0000) >> 16; fg_iavg_hth_15_00 = fg_iavg_reg_ht & 0xffff; disable_gauge_irq(gauge_dev, FG_IAVG_H_IRQ); disable_gauge_irq(gauge_dev, FG_IAVG_L_IRQ); regval = fg_iavg_lth_28_16 << 16 | fg_iavg_lth_15_00; regmap_raw_write(gauge_dev->regmap, RG_FGADC_IAVG_CON3, ®val, sizeof(regval)); regval = fg_iavg_hth_28_16 << 16 | fg_iavg_hth_15_00; regmap_raw_write(gauge_dev->regmap, RG_FGADC_IAVG_CON5, ®val, sizeof(regval)); enable_gauge_irq(gauge_dev, FG_IAVG_H_IRQ); if (iavg_lt > 0) enable_gauge_irq(gauge_dev, FG_IAVG_L_IRQ); else disable_gauge_irq(gauge_dev, FG_IAVG_L_IRQ); bm_debug("[FG_IAVG_INT][%s] iavg %d iavg_gap %d iavg_ht %lld iavg_lt %lld fg_iavg_reg_ht %lld fg_iavg_reg_lt %lld\n", __func__, iavg, iavg_gap, iavg_ht, iavg_lt, fg_iavg_reg_ht, fg_iavg_reg_lt); bm_debug("[FG_IAVG_INT][%s] lt_28_16 0x%x lt_15_00 0x%x ht_28_16 0x%x ht_15_00 0x%x\n", __func__, fg_iavg_lth_28_16, fg_iavg_lth_15_00, fg_iavg_hth_28_16, fg_iavg_hth_15_00); return 0; } static int hw_info_set(struct mtk_gauge *gauge_dev, struct mtk_gauge_sysfs_field_info *attr, int en) { int ret = 0; int is_iavg_valid; int avg_current; int iavg_th; unsigned int time; struct gauge_hw_status *gauge_status; gauge_status = &gauge_dev->hw_status; /* Current_1 */ ret = instant_current(gauge_dev, &gauge_dev->fg_hw_info.current_1, MT6375_GAUGE_CIC1); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } /* Current_2 */ ret = instant_current(gauge_dev, &gauge_dev->fg_hw_info.current_2, MT6375_GAUGE_CIC2); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } /* curr_out = pmic_get_register_value(PMIC_FG_CURRENT_OUT); */ /* fg_offset = pmic_get_register_value(PMIC_FG_OFFSET); */ /* Iavg */ ret = average_current_get(gauge_dev, NULL, &avg_current); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } is_iavg_valid = gauge_dev->fg_hw_info.current_avg_valid; if ((is_iavg_valid == 1) && (gauge_status->iavg_intr_flag == 0)) { bm_debug("[read_fg_hw_info]set first fg_set_iavg_intr %d %d\n", is_iavg_valid, gauge_status->iavg_intr_flag); gauge_status->iavg_intr_flag = 1; iavg_th = gauge_dev->gm->fg_cust_data.diff_iavg_th; ret = fg_set_iavg_intr(gauge_dev, &iavg_th); } else if (is_iavg_valid == 0) { gauge_status->iavg_intr_flag = 0; disable_gauge_irq(gauge_dev, FG_IAVG_H_IRQ); disable_gauge_irq(gauge_dev, FG_IAVG_L_IRQ); bm_debug( "[read_fg_hw_info] doublecheck first fg_set_iavg_intr %d %d\n", is_iavg_valid, gauge_status->iavg_intr_flag); } bm_debug("[read_fg_hw_info] thirdcheck first fg_set_iavg_intr %d %d\n", is_iavg_valid, gauge_status->iavg_intr_flag); /* Set Read Latchdata */ pre_gauge_update(gauge_dev); /* Ncar */ read_fg_hw_info_ncar(gauge_dev); /* recover read */ post_gauge_update(gauge_dev); coulomb_get(gauge_dev, NULL, &gauge_dev->fg_hw_info.car); fgauge_get_time(gauge_dev, &time); gauge_dev->fg_hw_info.time = time; bm_debug("[FGADC_intr_end][read_fg_hw_info] curr_1 %d curr_2 %d Iavg %d sign %d car %d ncar %d time %d\n", gauge_dev->fg_hw_info.current_1, gauge_dev->fg_hw_info.current_2, gauge_dev->fg_hw_info.current_avg, gauge_dev->fg_hw_info.current_avg_sign, gauge_dev->fg_hw_info.car, gauge_dev->fg_hw_info.ncar, gauge_dev->fg_hw_info.time); return 0; } static int bat_cycle_intr_threshold_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int threshold) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); long long car = threshold; long long carReg; u32 regval; disable_gauge_irq(gauge, FG_N_CHARGE_L_IRQ); #if defined(__LP64__) || defined(_LP64) car = car * 100000 / priv->unit_charge; /* 1000 * 100 */ #else car = div_s64(car * 100000, priv->unit_charge); #endif if (gauge->hw_status.r_fg_value != priv->default_r_fg) { car = (car * gauge->hw_status.r_fg_value); #if defined(__LP64__) || defined(_LP64) do_div(car, priv->default_r_fg); #else car = div_s64(car, priv->default_r_fg); #endif } car = car * 1000; #if defined(__LP64__) || defined(_LP64) do_div(car, gauge->gm->fg_cust_data.car_tune_value); #else car = div_s64(car, gauge->gm->fg_cust_data.car_tune_value); #endif carReg = car; carReg = 0 - carReg; regval = carReg & FG_N_CHARGE_TH_MASK; regmap_raw_write(gauge->regmap, RG_FGADC_NCAR_CON2, ®val, sizeof(regval)); bm_err("car:%d carR:%lld r:%lld\n", threshold, car, carReg); enable_gauge_irq(gauge, FG_N_CHARGE_L_IRQ); return 0; } static int ncar_reset_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { regmap_update_bits(gauge->regmap, RG_FGADC_CON2, FG_N_CHARGE_RST_MASK, FG_N_CHARGE_RST_MASK); udelay(200); regmap_update_bits(gauge->regmap, RG_FGADC_CON2, FG_N_CHARGE_RST_MASK, 0); return 0; } static int soff_reset_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int en) { return 0; } static int zcv_intr_en_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int en) { static int cnt; bm_debug("%s %d %d\n", __func__, cnt, en); cnt = en ? cnt + 1 : cnt - 1; if (en == 0) { disable_gauge_irq(gauge, ZCV_IRQ); regmap_update_bits(gauge->regmap, RG_FGADC_CON0, FG_ZCV_DET_EN_MASK, 0); mdelay(1); } else if (en == 1) { enable_gauge_irq(gauge, ZCV_IRQ); regmap_update_bits(gauge->regmap, RG_FGADC_CON0, FG_ZCV_DET_EN_MASK, FG_ZCV_DET_EN_MASK); } bm_debug("[FG_ZCV_INT][fg_set_zcv_intr_en] En %d\n", en); return 0; } static int zcv_intr_threshold_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int zcv_avg_current) { int fg_zcv_det_time; int fg_zcv_car_th = 0; fg_zcv_det_time = gauge->gm->fg_cust_data.zcv_suspend_time; fg_zcv_car_th = (fg_zcv_det_time + 1) * 4 * zcv_avg_current / 60; bm_debug("[%s] current:%d, fg_zcv_det_time:%d, fg_zcv_car_th:%d\n", __func__, zcv_avg_current, fg_zcv_det_time, fg_zcv_car_th); fgauge_set_zcv_intr_internal(gauge, fg_zcv_det_time, fg_zcv_car_th); return 0; } static int bat_plugout_en_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { if (!!val) enable_gauge_irq(gauge, BAT_PLUGOUT_IRQ); else disable_gauge_irq(gauge, BAT_PLUGOUT_IRQ); return 0; } static int gauge_initialized_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { unsigned int fg_reset_status = 0; regmap_read(gauge->regmap, RG_FGADC_RST_CON0, &fg_reset_status); *val = fg_reset_status & FG_RSTB_STATUS_MASK; return 0; } static int gauge_initialized_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { regmap_update_bits(gauge->regmap, RG_FGADC_RST_CON0, FG_RSTB_STATUS_MASK, val ? FG_RSTB_STATUS_MASK : 0); return 0; } static int reset_fg_rtc_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { int hw_id = 0x6375; int temp_value; u8 spare0_reg, after_rst_spare0_reg; u8 spare3_reg, after_rst_spare3_reg; fgauge_read_RTC_boot_status(gauge); /* read spare0 */ spare0_reg = get_rtc_spare0_fg_value(gauge); /* raise 15b to reset */ if ((hw_id & 0xff00) == 0x3500) { temp_value = 0x80; set_rtc_spare0_fg_value(gauge, temp_value); mdelay(1); temp_value = 0x00; set_rtc_spare0_fg_value(gauge, temp_value); } else { temp_value = 0x80; set_rtc_spare0_fg_value(gauge, temp_value); mdelay(1); temp_value = 0x20; set_rtc_spare0_fg_value(gauge, temp_value); } /* read spare0 again */ after_rst_spare0_reg = get_rtc_spare0_fg_value(gauge); /* read spare3 */ spare3_reg = get_rtc_spare_fg_value(gauge); /* set spare3 0x7f */ set_rtc_spare_fg_value(gauge, spare3_reg | 0x80); /* read spare3 again */ after_rst_spare3_reg = get_rtc_spare_fg_value(gauge); bm_err("[fgauge_read_RTC_boot_status] spare0 0x%x 0x%x, spare3 0x%x 0x%x\n", spare0_reg, after_rst_spare0_reg, spare3_reg, after_rst_spare3_reg); if ((after_rst_spare3_reg != (spare3_reg | 0x80)) || (after_rst_spare0_reg != temp_value)) { after_rst_spare0_reg = get_rtc_spare0_fg_value(gauge); after_rst_spare3_reg = get_rtc_spare_fg_value(gauge); bm_err("[%s][retry] spare0 0x%x 0x%x, spare3 0x%x 0x%x\n", __func__, spare0_reg, after_rst_spare0_reg, spare3_reg, after_rst_spare3_reg); #if IS_ENABLED(CONFIG_MTK_AEE_FEATURE) if ((after_rst_spare3_reg != (spare3_reg | 0x80)) || (after_rst_spare0_reg != temp_value)) aee_kernel_warning("BATTERY", "BATTERY: RG_SPARE R/W fail"); #endif } return 0; } static int nafg_vbat_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *vbat) { *vbat = get_nafg_vbat(gauge); return 0; } static int nafg_zcv_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int zcv) { gauge->nafg_zcv_mv = zcv; /* 0.1 mv*/ return 0; } static int nafg_en_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { static int cnt; bm_debug("%s %d %d\n", __func__, cnt, val); cnt = val ? cnt + 1 : cnt - 1; if (val) { enable_gauge_irq(gauge, NAFG_IRQ); bm_debug("[%s]enable:%d\n", __func__, val); } else { disable_gauge_irq(gauge, NAFG_IRQ); bm_debug("[%s]disable:%d\n", __func__, val); } regmap_update_bits(gauge->regmap, RG_AUXADC_NAG_0, AUXADC_NAG_IRQ_EN_MASK | AUXADC_NAG_EN_MASK, val ? (AUXADC_NAG_IRQ_EN_MASK | AUXADC_NAG_EN_MASK) : 0); return 0; } static int nafg_c_dltv_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *nafg_c_dltv) { signed int nag_c_dltv_value; signed int nag_c_dltv_value_h; signed int nag_c_dltv_reg_value; signed int nag_c_dltv_mv_value; bool bcheckbit10; u32 nag_c_dltv_regval = 0; regmap_raw_read(gauge->regmap, RG_AUXADC_NAG_13, &nag_c_dltv_regval, sizeof(nag_c_dltv_regval)); nag_c_dltv_regval &= AUXADC_NAG_C_DLTV_MASK; nag_c_dltv_value = nag_c_dltv_regval & 0xffff; nag_c_dltv_value_h = nag_c_dltv_regval >> 16; bcheckbit10 = nag_c_dltv_value_h & 0x0400; if (bcheckbit10 == 0) nag_c_dltv_reg_value = (nag_c_dltv_value & 0xffff) + ((nag_c_dltv_value_h & 0x07ff) << 16); else nag_c_dltv_reg_value = (nag_c_dltv_value & 0xffff) + (((nag_c_dltv_value_h | 0xf800) & 0xffff) << 16); nag_c_dltv_mv_value = reg_to_mv_value(nag_c_dltv_reg_value); *nafg_c_dltv = nag_c_dltv_mv_value; bm_debug("[fg_bat_nafg][%s] mV:Reg[%d:%d] [b10:%d][26_16(0x%04x) 15_00(0x%04x)]\n", __func__, nag_c_dltv_mv_value, nag_c_dltv_reg_value, bcheckbit10, nag_c_dltv_value_h, nag_c_dltv_value); return 0; } static int nafg_c_dltv_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int c_dltv_mv) { gauge->nafg_c_dltv_mv = c_dltv_mv; /* 0.1 mv*/ fgauge_set_nafg_intr_internal(gauge, gauge->gm->fg_cust_data.nafg_time_setting, gauge->nafg_zcv_mv, gauge->nafg_c_dltv_mv); return 0; } static int nafg_dltv_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *nag_dltv) { u16 nag_dltv_reg_value = 0; signed int nag_dltv_mv_value; s16 reg_value; /*AUXADC_NAG_4*/ regmap_raw_read(gauge->regmap, RG_AUXADC_NAG_11, &nag_dltv_reg_value, sizeof(nag_dltv_reg_value)); reg_value = nag_dltv_reg_value & 0xffff; nag_dltv_mv_value = reg_to_mv_value(reg_value); *nag_dltv = nag_dltv_mv_value; bm_debug("[fg_bat_nafg][%s] mV:Reg [%d:%d] [%d:%d]\n", __func__, nag_dltv_mv_value, nag_dltv_reg_value, reg_to_mv_value(reg_value), reg_value); return 0; } static int nafg_cnt_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *nag_cnt) { u32 NAG_C_DLTV_CNT = 0; regmap_raw_read(gauge->regmap, RG_AUXADC_NAG_7, &NAG_C_DLTV_CNT, sizeof(NAG_C_DLTV_CNT)); *nag_cnt = NAG_C_DLTV_CNT & AUXADC_NAG_CNT_MASK; bm_debug("[fg_bat_nafg][%s] %d [25_0 %d]\n", __func__, *nag_cnt, NAG_C_DLTV_CNT); return 0; } static int zcv_current_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *zcv_current) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); u16 uvalue16 = 0; signed int dvalue = 0; long long Temp_Value = 0; regmap_raw_read(gauge->regmap, RG_FGADC_ZCV_CON2, &uvalue16, sizeof(uvalue16)); dvalue = uvalue16; if (dvalue == 0) { Temp_Value = (long long) dvalue; } else if (dvalue > 32767) { /* > 0x8000 */ Temp_Value = (long long) (dvalue - 65535); Temp_Value = Temp_Value - (Temp_Value * 2); } else { Temp_Value = (long long) dvalue; } Temp_Value = Temp_Value * priv->unit_fgcurrent; #if defined(__LP64__) || defined(_LP64) do_div(Temp_Value, 100000); #else Temp_Value = div_s64(Temp_Value, 100000); #endif dvalue = (unsigned int) Temp_Value; /* Auto adjust value */ if (gauge->gm->fg_cust_data.r_fg_value != priv->default_r_fg) { bm_debug( "[fgauge_read_current] Auto adjust value due to the Rfg is %d\n Ori curr=%d", gauge->gm->fg_cust_data.r_fg_value, dvalue); dvalue = (dvalue * priv->default_r_fg) / gauge->gm->fg_cust_data.r_fg_value; bm_debug("[fgauge_read_current] new current=%d\n", dvalue); } bm_debug("[fgauge_read_current] ori current=%d\n", dvalue); dvalue = ((dvalue * gauge->gm->fg_cust_data.car_tune_value) / 1000); bm_debug("[fgauge_read_current] final current=%d (ratio=%d)\n", dvalue, gauge->gm->fg_cust_data.car_tune_value); *zcv_current = dvalue; return 0; } static int zcv_get(struct mtk_gauge *gauge_dev, struct mtk_gauge_sysfs_field_info *attr, int *zcv) { signed int adc_result_reg = 0; signed int adc_result = 0; u16 regval = 0; regmap_raw_read(gauge_dev->regmap, RG_AUXADC_ADC_OUT_FGADC_PCHR, ®val, sizeof(regval)); adc_result_reg = regval & AUXADC_ADC_OUT_FGADC_PCHR_MASK; adc_result = reg_to_mv_value(adc_result_reg); bm_err("[oam] %s BATSNS (pchr):adc_result_reg=%d, adc_result=%d\n", __func__, adc_result_reg, adc_result); *zcv = adc_result; return 0; } static int get_charger_zcv(struct mtk_gauge *gauge_dev) { struct power_supply *chg_psy; union power_supply_propval val; int ret = 0; chg_psy = power_supply_get_by_name("mtk-master-charger"); if (chg_psy == NULL) { bm_err("[%s] can get charger psy\n", __func__); return -ENODEV; } ret = power_supply_get_property(chg_psy, POWER_SUPPLY_PROP_VOLTAGE_BOOT, &val); bm_err("[%s]_hw_ocv_chgin=%d, ret=%d\n", __func__, val.intval, ret); return val.intval; } static int boot_zcv_get(struct mtk_gauge *gauge_dev, struct mtk_gauge_sysfs_field_info *attr, int *val) { int _hw_ocv, _sw_ocv; int _hw_ocv_src; int _prev_hw_ocv, _prev_hw_ocv_src; int _hw_ocv_rdy; int _flag_unreliable; int _hw_ocv_75_pon; int _hw_ocv_75_plugin; int _hw_ocv_75_before_chgin; int _hw_ocv_75_pon_rdy; int _hw_ocv_chgin; int _hw_ocv_chgin_rdy; int now_temp; int now_thr; int tmp_hwocv_chgin = 0; bool fg_is_charger_exist; struct mtk_battery *gm; struct zcv_data *zcvinfo; struct gauge_hw_status *p; gm = gauge_dev->gm; p = &gauge_dev->hw_status; zcvinfo = &gauge_dev->zcv_info; _hw_ocv_75_pon_rdy = read_hw_ocv_6375_power_on_rdy(gauge_dev); _hw_ocv_75_pon = read_hw_ocv_6375_power_on(gauge_dev); _hw_ocv_75_plugin = read_hw_ocv_6375_plug_in(gauge_dev); _hw_ocv_75_before_chgin = read_hw_ocv_6375_before_chgin(gauge_dev); tmp_hwocv_chgin = get_charger_zcv(gauge_dev); if (tmp_hwocv_chgin != -ENODEV) _hw_ocv_chgin = tmp_hwocv_chgin / 100; else _hw_ocv_chgin = 0; now_temp = gm->bs_data.bat_batt_temp; if (gm == NULL) now_thr = 300; else { if (now_temp > gm->ext_hwocv_swocv_lt_temp) now_thr = gm->ext_hwocv_swocv; else now_thr = gm->ext_hwocv_swocv_lt; } if (_hw_ocv_chgin < 25000) _hw_ocv_chgin_rdy = 0; else _hw_ocv_chgin_rdy = 1; /* if preloader records charge in, need to using subpmic as hwocv */ fgauge_get_info(gauge_dev, GAUGE_PROP_PL_CHARGING_STATUS, &zcvinfo->pl_charging_status); fgauge_set_info(gauge_dev, GAUGE_PROP_PL_CHARGING_STATUS, 0); fgauge_get_info(gauge_dev, GAUGE_PROP_MONITER_PLCHG_STATUS, &zcvinfo->moniter_plchg_bit); fgauge_set_info(gauge_dev, GAUGE_PROP_MONITER_PLCHG_STATUS, 0); if (zcvinfo->pl_charging_status == 1) fg_is_charger_exist = 1; else fg_is_charger_exist = 0; _hw_ocv = _hw_ocv_75_pon; _sw_ocv = gauge_dev->hw_status.sw_ocv; /* _sw_ocv = get_sw_ocv();*/ _hw_ocv_src = FROM_PMIC_PON_ON; _prev_hw_ocv = _hw_ocv; _prev_hw_ocv_src = FROM_PMIC_PON_ON; _flag_unreliable = 0; if (fg_is_charger_exist) { _hw_ocv_rdy = _hw_ocv_75_pon_rdy; if (_hw_ocv_rdy == 1) { if (_hw_ocv_chgin_rdy == 1) { _hw_ocv = _hw_ocv_chgin; _hw_ocv_src = FROM_CHR_IN; } else { _hw_ocv = _hw_ocv_75_pon; _hw_ocv_src = FROM_PMIC_PON_ON; } if (abs(_hw_ocv - _sw_ocv) > now_thr) { _prev_hw_ocv = _hw_ocv; _prev_hw_ocv_src = _hw_ocv_src; _hw_ocv = _sw_ocv; _hw_ocv_src = FROM_SW_OCV; p->flag_hw_ocv_unreliable = true; _flag_unreliable = 1; } } else { /* fixme: swocv is workaround */ /* plug charger poweron but charger not ready */ /* should use swocv to workaround */ _hw_ocv = _sw_ocv; _hw_ocv_src = FROM_SW_OCV; if (_hw_ocv_chgin_rdy != 1) { if (abs(_hw_ocv - _sw_ocv) > now_thr) { _prev_hw_ocv = _hw_ocv; _prev_hw_ocv_src = _hw_ocv_src; _hw_ocv = _sw_ocv; _hw_ocv_src = FROM_SW_OCV; p->flag_hw_ocv_unreliable = true; _flag_unreliable = 1; } } } } else { if (_hw_ocv_75_pon_rdy == 0) { _hw_ocv = _sw_ocv; _hw_ocv_src = FROM_SW_OCV; } } /* final chance to check hwocv */ if (gm != NULL) if (_hw_ocv < 28000 && (gm->disableGM30 == 0)) { bm_err("[%s] ERROR, _hw_ocv=%d src:%d, force use swocv\n", __func__, _hw_ocv, _hw_ocv_src); _hw_ocv = _sw_ocv; _hw_ocv_src = FROM_SW_OCV; } *val = _hw_ocv; zcvinfo->charger_zcv = _hw_ocv_chgin; zcvinfo->pmic_rdy = _hw_ocv_75_pon_rdy; zcvinfo->pmic_zcv = _hw_ocv_75_pon; zcvinfo->pmic_in_zcv = _hw_ocv_75_plugin; zcvinfo->swocv = _sw_ocv; zcvinfo->zcv_from = _hw_ocv_src; zcvinfo->zcv_tmp = now_temp; if (zcvinfo->zcv_1st_read == false) { zcvinfo->charger_zcv_1st = zcvinfo->charger_zcv; zcvinfo->pmic_rdy_1st = zcvinfo->pmic_rdy; zcvinfo->pmic_zcv_1st = zcvinfo->pmic_zcv; zcvinfo->pmic_in_zcv_1st = zcvinfo->pmic_in_zcv; zcvinfo->swocv_1st = zcvinfo->swocv; zcvinfo->zcv_from_1st = zcvinfo->zcv_from; zcvinfo->zcv_tmp_1st = zcvinfo->zcv_tmp; zcvinfo->zcv_1st_read = true; } gauge_dev->fg_hw_info.pmic_zcv = _hw_ocv_75_pon; gauge_dev->fg_hw_info.pmic_zcv_rdy = _hw_ocv_75_pon_rdy; gauge_dev->fg_hw_info.charger_zcv = _hw_ocv_chgin; gauge_dev->fg_hw_info.hw_zcv = _hw_ocv; bm_err("[%s] g_fg_is_charger_exist %d _hw_ocv_chgin_rdy %d pl:%d %d\n", __func__, fg_is_charger_exist, _hw_ocv_chgin_rdy, zcvinfo->pl_charging_status, zcvinfo->moniter_plchg_bit); bm_err("[%s] _hw_ocv %d _sw_ocv %d now_thr %d\n", __func__, _prev_hw_ocv, _sw_ocv, now_thr); bm_err("[%s] _hw_ocv %d _hw_ocv_src %d _prev_hw_ocv %d _prev_hw_ocv_src %d _flag_unreliable %d\n", __func__, _hw_ocv, _hw_ocv_src, _prev_hw_ocv, _prev_hw_ocv_src, _flag_unreliable); bm_err("[%s] _hw_ocv_75_pon_rdy %d _hw_ocv_75_pon %d _hw_ocv_75_plugin %d _hw_ocv_chgin %d _sw_ocv %d now_temp %d now_thr %d\n", __func__, _hw_ocv_75_pon_rdy, _hw_ocv_75_pon, _hw_ocv_75_plugin, _hw_ocv_chgin, _sw_ocv, now_temp, now_thr); bm_err("[%s] _hw_ocv_75_before_chgin %d\n", __func__, _hw_ocv_75_before_chgin); return 0; } static int reset_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int threshold) { bm_err("[fgauge_hw_reset]\n"); regmap_update_bits(gauge->regmap, RG_FGADC_CON2, FG_CHARGE_RST_MASK | FG_TIME_RST_MASK, FG_CHARGE_RST_MASK | FG_TIME_RST_MASK); mdelay(1); regmap_update_bits(gauge->regmap, RG_FGADC_CON2, FG_CHARGE_RST_MASK | FG_TIME_RST_MASK, 0); return 0; } static int ptim_resist_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { int ret; if (IS_ERR(gauge->chan_ptim_r)) { bm_err("[%s]chan error\n", __func__); return -EOPNOTSUPP; } ret = iio_read_channel_processed(gauge->chan_ptim_r, val); if (ret < 0) bm_err("[%s]read fail,ret=%d\n", __func__, ret); return ret; } static int ptim_battery_voltage_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { int ret; if (IS_ERR(gauge->chan_ptim_bat_voltage)) { bm_err("[%s]chan error\n", __func__); return -EOPNOTSUPP; } ret = iio_read_channel_processed(gauge->chan_ptim_bat_voltage, val); if (ret < 0) bm_err("[%s]read fail,ret=%d\n", __func__, ret); return ret; } static int rtc_ui_soc_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { u8 rtc_value; int rtc_ui_soc = 0; rtc_value = get_rtc_spare_fg_value(gauge); rtc_ui_soc = (rtc_value & 0x7f); *val = rtc_ui_soc; if (rtc_ui_soc > 100 || rtc_ui_soc < 0) bm_err("[%s]ERR!rtc=0x%x,ui_soc=%d\n", rtc_value, rtc_ui_soc); else bm_debug("[%s]rtc=0x%x,ui_soc=%d\n", rtc_value, rtc_ui_soc); return 0; } static int rtc_ui_soc_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { u8 spare3_reg = get_rtc_spare_fg_value(gauge); int spare3_reg_valid = 0; int new_spare3_reg = 0; int latest_spare3_reg = 0; spare3_reg_valid = (spare3_reg & 0x80); new_spare3_reg = spare3_reg_valid + val; set_rtc_spare_fg_value(gauge, new_spare3_reg); latest_spare3_reg = get_rtc_spare_fg_value(gauge); bm_debug("[%s] ui_soc=%d, spare3_reg=0x%x, %x, %x, valid:%d\n", __func__, val, spare3_reg, new_spare3_reg, latest_spare3_reg, spare3_reg_valid); if (latest_spare3_reg != new_spare3_reg) { latest_spare3_reg = get_rtc_spare_fg_value(gauge); bm_err("[%s][retry] ui_soc=%d, spare3_reg=0x%x, %x, %x, valid:%d\n", __func__, val, spare3_reg, new_spare3_reg, latest_spare3_reg, spare3_reg_valid); #if IS_ENABLED(CONFIG_MTK_AEE_FEATURE) if (latest_spare3_reg != new_spare3_reg) aee_kernel_warning("BATTERY", "BATTERY: RG_SPARE R/W fail"); #endif } return 1; } static void switch_vbat2_det_time(int _prd, int *value) { if (_prd >= 1 && _prd < 3) *value = 0; else if (_prd >= 3 && _prd < 5) *value = 1; else if (_prd >= 5 && _prd < 10) *value = 2; else if (_prd >= 10) *value = 3; } static void switch_vbat2_debt_counter(int _prd, int *value) { if (_prd >= 1 && _prd < 2) *value = 0; else if (_prd >= 2 && _prd < 4) *value = 1; else if (_prd >= 4 && _prd < 8) *value = 2; else if (_prd >= 8) *value = 3; } static int vbat_lt_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int threshold) { int vbat2_l_th_mv = threshold; int vbat2_l_th_reg = mv_to_reg_12_value(gauge, vbat2_l_th_mv); int vbat2_det_counter = 0; int vbat2_det_time = 0; u16 regval; switch_vbat2_det_time(gauge->hw_status.vbat2_det_time, &vbat2_det_time); switch_vbat2_debt_counter(gauge->hw_status.vbat2_det_counter, &vbat2_det_counter); regval = vbat2_l_th_reg & AUXADC_LBAT2_VOLT_MIN_MASK; regmap_raw_write(gauge->regmap, RG_AUXADC_LBAT2_6, ®val, sizeof(regval)); regmap_update_bits(gauge->regmap, RG_AUXADC_LBAT2_1, AUXADC_LBAT2_DET_PRD_SEL_MASK, vbat2_det_time << AUXADC_LBAT2_DET_PRD_SEL_SHIFT); regmap_update_bits(gauge->regmap, RG_AUXADC_LBAT2_1, AUXADC_LBAT2_DEBT_MIN_SEL_MASK, vbat2_det_counter << AUXADC_LBAT2_DEBT_MIN_SEL_SHIFT); bm_debug("[fg_set_vbat2_l_th] thr:%d [0x%x %d 0x%x %d 0x%x]\n", threshold, vbat2_l_th_reg, gauge->hw_status.vbat2_det_time, vbat2_det_time, gauge->hw_status.vbat2_det_counter, vbat2_det_counter); return 0; } static int vbat_ht_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int threshold) { int vbat2_h_th_mv = threshold; int vbat2_h_th_reg = mv_to_reg_12_value(gauge, vbat2_h_th_mv); int vbat2_det_counter = 0; int vbat2_det_time = 0; u16 regval; switch_vbat2_det_time(gauge->hw_status.vbat2_det_time, &vbat2_det_time); switch_vbat2_debt_counter(gauge->hw_status.vbat2_det_counter, &vbat2_det_counter); regval = vbat2_h_th_reg & AUXADC_LBAT2_VOLT_MAX_MASK; regmap_raw_write(gauge->regmap, RG_AUXADC_LBAT2_3, ®val, sizeof(regval)); regmap_update_bits(gauge->regmap, RG_AUXADC_LBAT2_1, AUXADC_LBAT2_DET_PRD_SEL_MASK, vbat2_det_time << AUXADC_LBAT2_DET_PRD_SEL_SHIFT); regmap_update_bits(gauge->regmap, RG_AUXADC_LBAT2_1, AUXADC_LBAT2_DEBT_MAX_SEL_MASK, vbat2_det_counter << AUXADC_LBAT2_DEBT_MAX_SEL_SHIFT); bm_debug("[fg_set_vbat2_h_th] thr:%d [0x%x %d 0x%x %d 0x%x]\n", threshold, vbat2_h_th_reg, gauge->hw_status.vbat2_det_time, vbat2_det_time, gauge->hw_status.vbat2_det_counter, vbat2_det_counter); return 0; } static void enable_lbat2_en(struct mtk_gauge *gauge) { if (gauge->vbat_l_en == true || gauge->vbat_h_en == true) regmap_update_bits(gauge->regmap, RG_AUXADC_LBAT2_0, AUXADC_LBAT2_EN_MASK, AUXADC_LBAT2_EN_MASK); if (gauge->vbat_l_en == false && gauge->vbat_h_en == false) regmap_update_bits(gauge->regmap, RG_AUXADC_LBAT2_0, AUXADC_LBAT2_EN_MASK, 0); } static int en_l_vbat_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { static int cnt; bm_debug("%s %d %d\n", __func__, cnt, val); cnt = val ? cnt + 1 : cnt - 1; if (val) enable_gauge_irq(gauge, VBAT_L_IRQ); else disable_gauge_irq(gauge, VBAT_L_IRQ); regmap_update_bits(gauge->regmap, RG_AUXADC_LBAT2_5, AUXADC_LBAT2_IRQ_EN_MIN_MASK | AUXADC_LBAT2_DET_MIN_MASK, val ? (AUXADC_LBAT2_IRQ_EN_MIN_MASK | AUXADC_LBAT2_DET_MIN_MASK) : 0); gauge->vbat_l_en = !!val; enable_lbat2_en(gauge); return 0; } static int en_h_vbat_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { if (val) enable_gauge_irq(gauge, VBAT_H_IRQ); else disable_gauge_irq(gauge, VBAT_H_IRQ); regmap_update_bits(gauge->regmap, RG_AUXADC_LBAT2_2, AUXADC_LBAT2_IRQ_EN_MAX_MASK | AUXADC_LBAT2_DET_MAX_MASK, val ? (AUXADC_LBAT2_IRQ_EN_MAX_MASK | AUXADC_LBAT2_DET_MAX_MASK) : 0); gauge->vbat_h_en = !!val; enable_lbat2_en(gauge); return 0; } static int mt6375_enable_auxadc_hm(struct mt6375_priv *priv, bool en) { static const u8 code[] = { 0x63, 0x63 }; if (en) return regmap_bulk_write(priv->regmap, HK_TOP_WKEY, code, ARRAY_SIZE(code)); return regmap_write(priv->regmap, HK_TOP_WKEY, 0); } static int mt6375_enable_tm(struct mt6375_priv *priv, bool en) { u8 tm_pascode[] = { 0x69, 0x96, 0x63, 0x75 }; if (en) return regmap_bulk_write(priv->regmap, RG_TM_PASCODE1, tm_pascode, ARRAY_SIZE(tm_pascode)); return regmap_write(priv->regmap, RG_TM_PASCODE1, 0); } static int mt6375_get_vbat_mon_rpt(struct mt6375_priv *priv, int *vbat) { struct power_supply *psy; union power_supply_propval val; int ret; u16 data; psy = devm_power_supply_get_by_phandle(priv->dev, "charger"); if (psy) { ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CALIBRATE, &val); if (ret >= 0) *vbat = val.intval; power_supply_put(psy); } else { ret = regmap_update_bits(priv->regmap, RG_ADC_CONFG1, VBAT_MON_EN_MASK, 0xFF); if (ret < 0) return ret; usleep_range(ADC_CONV_TIME_US * 2, ADC_CONV_TIME_US * 3); ret = regmap_bulk_read(priv->regmap, RG_VBAT_MON_RPT, &data, 2); if (ret < 0) dev_notice(priv->dev, "failed to get vbat monitor report\n"); else *vbat = ADC_FROM_VBAT_RAW(be16_to_cpu(data)); regmap_update_bits(priv->regmap, RG_ADC_CONFG1, VBAT_MON_EN_MASK, 0); } return ret; } static int __maybe_unused battery_voltage_cali(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); int ret = 0; int chg_vbat, auxadc_vbat, vbat_diff, vbat_diff_sum = 0, vbat_diff_avg; int chg_vbat_min = INT_MAX, auxadc_vbat_min = INT_MAX; int chg_vbat_max = 0, auxadc_vbat_max = 0; int cnt = 0, max_cnt = 5; int value = 0; u16 gain_err = priv->gain_err, gain_err_diff; u16 data = 0; while (abs(cnt) < max_cnt) { ret = instant_current(gauge, &value, MT6375_GAUGE_CIC1); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } bm_err("%s: cic1 = %d\n", __func__, value); if (abs(value) > 500) { bm_err("%s: cic1 out of range(%d)\n", __func__, value); return -EINVAL; } ret = mt6375_get_vbat_mon_rpt(priv, &chg_vbat); if (ret < 0) { bm_err("%s: failed to get vbat_mon_rpt\n", __func__); return ret; } ret = iio_read_channel_processed(gauge->chan_bat_voltage, &auxadc_vbat); if (ret < 0) { bm_err("%s: failed to get auxadc_vbat(%d)\n", __func__, ret); return ret; } dev_info(priv->dev, "%s: chg_vbat:%d, auxadc_vbat:%d\n", __func__, chg_vbat, auxadc_vbat); chg_vbat_min = min(chg_vbat_min, chg_vbat); chg_vbat_max = max(chg_vbat_max, chg_vbat); auxadc_vbat_min = min(auxadc_vbat_min, auxadc_vbat); auxadc_vbat_max = max(auxadc_vbat_max, auxadc_vbat); dev_info(priv->dev, "%s: chg_vbat_min:%d, chg_vbat_max:%d\n", __func__, chg_vbat_min, chg_vbat_max); dev_info(priv->dev, "%s: auxadc_vbat_min:%d, auxadc_vbat_max:%d\n", __func__, auxadc_vbat_min, auxadc_vbat_max); if (chg_vbat_max - chg_vbat_min > HTOL_THRESHOLD_MAX || auxadc_vbat_max - auxadc_vbat_min > HTOL_THRESHOLD_MAX) { bm_err("%s: vbat_diff min/max out of range\n", __func__); return ret; } vbat_diff = chg_vbat - auxadc_vbat; vbat_diff_sum += vbat_diff; if (abs(vbat_diff) > HTOL_THRESHOLD_MAX || abs(vbat_diff) < HTOL_THRESHOLD_MIN) { bm_err("%s: vbat_diff is out of range(%d), no need to calibrate\n", __func__, vbat_diff); return ret; } if (vbat_diff >= HTOL_THRESHOLD_MIN && cnt++ >= 0) continue; else if (vbat_diff <= -HTOL_THRESHOLD_MIN && cnt-- <= 0) continue; else return ret; } vbat_diff_avg = vbat_diff_sum / max_cnt; dev_info(priv->dev, "%s: vbat_diff_avg:%d, gain_err:0x%x, efuse_gain_err:0x%x\n", __func__, vbat_diff_avg, gain_err, priv->efuse_gain_err); gain_err += vbat_diff_avg; gain_err_diff = abs((int)gain_err - (int)priv->efuse_gain_err); if (abs(gain_err_diff) > HTOL_CALI_MAX) { bm_err("%s: gain_err_diff out of theshold(%d), adjust HTOL_THRESHOLD_MAX\n", __func__, gain_err_diff); if (gain_err > priv->efuse_gain_err) gain_err = priv->efuse_gain_err + HTOL_CALI_MAX; else gain_err = priv->efuse_gain_err - HTOL_CALI_MAX; return ret; } ret = mt6375_enable_auxadc_hm(priv, true); if (ret < 0) return ret; ret = regmap_bulk_write(priv->regmap, AUXADC_EFUSE_GAIN_TRIM, &gain_err, 2); if (ret < 0) goto out; priv->gain_err = gain_err; out: mt6375_enable_auxadc_hm(priv, false); ret = regmap_bulk_read(priv->regmap, AUXADC_EFUSE_GAIN_TRIM, &data, 2); dev_info(priv->dev, "%s: after cali, gain_err:0x%x\n", __func__, data); dev_info(priv->dev, "%s: done(%d)\n", __func__, ret); return ret; } static int mt6375_auxadc_init_vbat_calibration(struct mt6375_priv *priv) { int ret, offset_trim; u16 data = 0; regmap_bulk_read(priv->regmap, AUXADC_EFUSE_OFFSET_TRIM, &offset_trim, 2); if (offset_trim >= 0x4000) { bm_err("%s: before handle offset trim signed, offset_trim:0x%x\n", __func__, offset_trim); offset_trim = -(0x8000 - offset_trim); } priv->offset_trim = offset_trim; ret = mt6375_enable_auxadc_hm(priv, true); if (ret < 0) return ret; ret = regmap_bulk_read(priv->regmap, AUXADC_EFUSE_GAIN_TRIM, &data, 2); if (ret < 0) { mt6375_enable_auxadc_hm(priv, false); return ret; } priv->gain_err = data; mt6375_enable_auxadc_hm(priv, false); ret = mt6375_enable_tm(priv, true); if (ret < 0) return ret; ret = regmap_bulk_read(priv->regmap, AUXADC_EFUSE_GAIN_ERR, &data, 2); if (ret < 0) bm_err("%s: failed to get auxadc efuse trim\n", __func__); priv->efuse_gain_err = data; dev_info(priv->dev, "%s: gain_err:0x%x, efuse_gain_err:0x%x\n", __func__, priv->gain_err, priv->efuse_gain_err); return mt6375_enable_tm(priv, false); } static int regmap_type_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { *val = gauge->regmap_type; return 0; } static int bif_voltage_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { int ret; if (IS_ERR(gauge->chan_bif)) { bm_err("[%s]chan error\n", __func__); return -EOPNOTSUPP; } ret = iio_read_channel_processed(gauge->chan_bif, val); if (ret < 0) bm_err("[%s]read fail,ret=%d\n", __func__, ret); return ret; } static int battery_temperature_adc_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { int ret; if (IS_ERR(gauge->chan_bat_temp)) { bm_err("[%s]chan error\n", __func__); return -EOPNOTSUPP; } ret = iio_read_channel_processed(gauge->chan_bat_temp, val); if (ret < 0) bm_err("[%s]read fail,ret=%d\n", __func__, ret); return ret; } static int __maybe_unused auxadc_reset(struct mt6375_priv *priv) { int ret; ret = mt6375_enable_auxadc_hm(priv, true); if (ret < 0) return ret; ret = regmap_write(priv->regmap, HK_TOP_RST_CON0, RESET_MASK); if (ret) goto out; ret = regmap_write(priv->regmap, HK_TOP_RST_CON0, 0); if (ret) goto out; out: mt6375_enable_auxadc_hm(priv, false); return ret; } static int bat_vol_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); int i, ret, vbat_mon; u32 data = 0; static long long t1; static int print_period = 3; static int dump_reg[] = { 0x236, 0x237, 0x238, 0x31C, 0x31D, 0x338, 0x339, 0x33A, 0x35D, 0x35E, 0x408, 0x409, 0x40A, 0x40B, 0x410, 0x411, 0x416, 0x417, 0x41E, 0x41F, 0x422, 0x423, 0x45C, 0x46E, 0x46F, 0x470, 0x471 }; if (IS_ERR(gauge->chan_bat_voltage)) { bm_err("[%s]chan error\n", __func__); return -EOPNOTSUPP; } ret = iio_read_channel_processed(gauge->chan_bat_voltage, val); if (ret < 0) { bm_err("[%s]read fail,ret=%d\n", __func__, ret); return ret; } if (*val < 1000) { if (t1 == 0) { t1 = local_clock(); } else if ((local_clock() - t1) / NSEC_PER_SEC > print_period) { t1 = local_clock(); ret = mt6375_get_vbat_mon_rpt(priv, &vbat_mon); bm_err("[%s] vbat_mon = %d(%d)\n", __func__, vbat_mon, ret); for (i = 0; i < ARRAY_SIZE(dump_reg); i++) { ret = regmap_read(gauge->regmap, dump_reg[i], &data); bm_err("[%s] addr:0x%4x, data:0x%x(%d)\n", __func__, dump_reg[i], data, ret); } } } return ret; } static int hw_version_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { *val = GAUGE_HW_V2000; return 0; } static int battery_exist_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { unsigned int regval = 0; int ret = 0; #if defined(CONFIG_FPGA_EARLY_PORTING) *val = 0; return 0; #endif ret = regmap_read(gauge->regmap, RG_BATON_ANA_MON0, ®val); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } regval = regval & AD_BATON_UNDET_MASK; *val = !regval ? 1 : 0; if (regval) { ret = regmap_update_bits(gauge->regmap, RG_AUXADC_CON42, AUXADC_ADC_RDY_PWRON_CLR_MASK, AUXADC_ADC_RDY_PWRON_CLR_MASK); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } mdelay(1); ret = regmap_update_bits(gauge->regmap, RG_AUXADC_CON42, AUXADC_ADC_RDY_PWRON_CLR_MASK, 0); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } } return 0; } static int coulomb_interrupt_lt_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); u16 temp_car_15_0 = 0; u16 temp_car_31_16 = 0; unsigned int uvalue32_car_msb = 0; signed int lowbound = 0; u16 lowbound_31_16 = 0, lowbound_15_00 = 0; signed int value32_car; long long car = val; int r_fg_value; int car_tune_value; r_fg_value = gauge->hw_status.r_fg_value; car_tune_value = gauge->gm->fg_cust_data.car_tune_value; bm_debug("%s car=%d\n", __func__, val); if (car == 0) { disable_gauge_irq(gauge, COULOMB_L_IRQ); return 0; } pre_gauge_update(gauge); regmap_raw_read(gauge->regmap, RG_FGADC_CAR_CON0, &temp_car_15_0, sizeof(temp_car_15_0)); regmap_raw_read(gauge->regmap, RG_FGADC_CAR_CON1, &temp_car_31_16, sizeof(temp_car_31_16)); post_gauge_update(gauge); uvalue32_car_msb = (temp_car_31_16 & 0x8000) >> 15; value32_car = temp_car_31_16 << 16 | temp_car_15_0; bm_debug("[%s] FG_CAR = 0x%x:%d uvalue32_car_msb:0x%x 0x%x 0x%x\r\n", __func__, value32_car, value32_car, uvalue32_car_msb, temp_car_15_0, temp_car_31_16); /* gap to register-base */ #if defined(__LP64__) || defined(_LP64) car = car * 100000 / priv->unit_charge; /* car * 1000 * 100 */ #else car = div_s64(car * 100000, priv->unit_charge); #endif if (r_fg_value != priv->default_r_fg && priv->default_r_fg != 0) #if defined(__LP64__) || defined(_LP64) car = (car * r_fg_value) / priv->default_r_fg; #else car = div_s64(car * r_fg_value, priv->default_r_fg); #endif #if defined(__LP64__) || defined(_LP64) car = ((car * 1000) / car_tune_value); #else car = div_s64((car * 1000), car_tune_value); #endif lowbound = value32_car; bm_debug("[%s]low=0x%x:%d diff_car=0x%llx:%lld\r\n", __func__, lowbound, lowbound, car, car); lowbound = lowbound - car; lowbound_31_16 = (lowbound & 0xffff0000) >> 16; lowbound_15_00 = (lowbound & 0xffff); bm_debug("[%s]final low=0x%x:%d car=0x%llx:%lld\r\n", __func__, lowbound, lowbound, car, car); bm_debug("[%s] final low 0x%x 0x%x 0x%x car=0x%llx\n", __func__, lowbound, lowbound_31_16, lowbound_15_00, car); disable_gauge_irq(gauge, COULOMB_L_IRQ); regmap_raw_write(gauge->regmap, RG_FGADC_CARTH_CON0, &lowbound_15_00, sizeof(lowbound_15_00)); regmap_raw_write(gauge->regmap, RG_FGADC_CARTH_CON1, &lowbound_31_16, sizeof(lowbound_31_16)); mdelay(1); enable_gauge_irq(gauge, COULOMB_L_IRQ); bm_debug("[%s] low:0x%x 0x%x car_value:%d car:%d irq:%d\r\n", __func__, lowbound_15_00, lowbound_31_16, val, value32_car, gauge->irq_no[COULOMB_L_IRQ]); return 0; } static int coulomb_interrupt_ht_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); u16 temp_car_15_0 = 0; u16 temp_car_31_16 = 0; unsigned int uvalue32_car_msb = 0; signed int upperbound = 0; u16 upperbound_31_16 = 0, upperbound_15_00 = 0; signed int value32_car; long long car = val; int r_fg_value; int car_tune_value; r_fg_value = gauge->hw_status.r_fg_value; car_tune_value = gauge->gm->fg_cust_data.car_tune_value; bm_debug("%s car=%d\n", __func__, val); if (car == 0) { disable_gauge_irq(gauge, COULOMB_H_IRQ); return 0; } pre_gauge_update(gauge); regmap_raw_read(gauge->regmap, RG_FGADC_CAR_CON0, &temp_car_15_0, sizeof(temp_car_15_0)); regmap_raw_read(gauge->regmap, RG_FGADC_CAR_CON1, &temp_car_31_16, sizeof(temp_car_31_16)); post_gauge_update(gauge); uvalue32_car_msb = (temp_car_31_16 & 0x8000) >> 15; value32_car = temp_car_31_16 << 16 | temp_car_15_0; bm_debug("[%s] FG_CAR = 0x%x:%d uvalue32_car_msb:0x%x 0x%x 0x%x\r\n", __func__, value32_car, value32_car, uvalue32_car_msb, temp_car_15_0, temp_car_31_16); #if defined(__LP64__) || defined(_LP64) car = car * 100000 / priv->unit_charge; #else car = div_s64(car * 100000, priv->unit_charge); #endif if (r_fg_value != priv->default_r_fg && priv->default_r_fg != 0) #if defined(__LP64__) || defined(_LP64) car = (car * r_fg_value) / priv->default_r_fg; #else car = div_s64(car * r_fg_value, priv->default_r_fg); #endif #if defined(__LP64__) || defined(_LP64) car = ((car * 1000) / car_tune_value); #else car = div_s64((car * 1000), car_tune_value); #endif upperbound = value32_car; bm_debug("[%s] upper = 0x%x:%d diff_car=0x%llx:%lld\r\n", __func__, upperbound, upperbound, car, car); upperbound = upperbound + car; upperbound_31_16 = (upperbound & 0xffff0000) >> 16; upperbound_15_00 = (upperbound & 0xffff); bm_debug("[%s] final upper = 0x%x:%d car=0x%llx:%lld\r\n", __func__, upperbound, upperbound, car, car); bm_debug("[%s] final upper 0x%x 0x%x 0x%x car=0x%llx\n", __func__, upperbound, upperbound_31_16, upperbound_15_00, car); disable_gauge_irq(gauge, COULOMB_H_IRQ); regmap_raw_write(gauge->regmap, RG_FGADC_CARTH_CON2, &upperbound_15_00, sizeof(upperbound_15_00)); regmap_raw_write(gauge->regmap, RG_FGADC_CARTH_CON3, &upperbound_31_16, sizeof(upperbound_31_16)); mdelay(1); enable_gauge_irq(gauge, COULOMB_H_IRQ); bm_debug("[%s] high:0x%x 0x%x car_value:%d car:%d irq:%d\r\n", __func__, upperbound_15_00, upperbound_31_16, val, value32_car, gauge->irq_no[COULOMB_H_IRQ]); return 0; } static int battery_current_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { int ret = 0; ret = instant_current(gauge, val, MT6375_GAUGE_CIC1); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } return 0; } static int battery_cic2_get(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int *val) { int ret = 0; ret = instant_current(gauge, val, MT6375_GAUGE_CIC2); if (ret) { pr_notice("%s error, ret = %d\n", __func__, ret); return ret; } return 0; } static int initial_set(struct mtk_gauge *gauge, struct mtk_gauge_sysfs_field_info *attr, int val) { int bat_flag = 0; int is_charger_exist; u16 rev_val = 0; regmap_update_bits(gauge->regmap, RG_AUXADC_NAG_0, AUXADC_NAG_PRD_MASK, 2 << AUXADC_NAG_PRD_SHIFT); fgauge_get_info(gauge, GAUGE_PROP_BAT_PLUG_STATUS, &bat_flag); fgauge_get_info(gauge, GAUGE_PROP_PL_CHARGING_STATUS, &is_charger_exist); regmap_raw_read(gauge->regmap, RG_SYSTEM_INFO_CON0, &rev_val, sizeof(rev_val)); bm_err("bat_plug:%d chr:%d info:0x%x\n", bat_flag, is_charger_exist, rev_val); gauge->hw_status.pl_charger_status = is_charger_exist; if (is_charger_exist == 1) { gauge->hw_status.is_bat_plugout = 1; fgauge_set_info(gauge, GAUGE_PROP_2SEC_REBOOT, 0); } else gauge->hw_status.is_bat_plugout = bat_flag ? 0 : 1; fgauge_set_info(gauge, GAUGE_PROP_BAT_PLUG_STATUS, 1); /*[12:8], 5 bits*/ gauge->hw_status.bat_plug_out_time = 31; fgauge_read_RTC_boot_status(gauge); return 1; } static ssize_t gauge_sysfs_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct power_supply *psy; struct mtk_gauge *gauge; struct mtk_gauge_sysfs_field_info *gauge_attr; int val; ssize_t ret; ret = kstrtoint(buf, 0, &val); if (ret < 0) return ret; psy = dev_get_drvdata(dev); gauge = (struct mtk_gauge *)power_supply_get_drvdata(psy); gauge_attr = container_of(attr, struct mtk_gauge_sysfs_field_info, attr); if (gauge_attr->set != NULL) { mutex_lock(&gauge->ops_lock); gauge_attr->set(gauge, gauge_attr, val); mutex_unlock(&gauge->ops_lock); } return count; } static ssize_t gauge_sysfs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy; struct mtk_gauge *gauge; struct mtk_gauge_sysfs_field_info *gauge_attr; int val = 0; ssize_t count; psy = dev_get_drvdata(dev); gauge = (struct mtk_gauge *)power_supply_get_drvdata(psy); gauge_attr = container_of(attr, struct mtk_gauge_sysfs_field_info, attr); if (gauge_attr->get != NULL) { mutex_lock(&gauge->ops_lock); gauge_attr->get(gauge, gauge_attr, &val); mutex_unlock(&gauge->ops_lock); } count = scnprintf(buf, PAGE_SIZE, "%d\n", val); return count; } /* Must be in the same order as GAUGE_PROP_* */ static struct mtk_gauge_sysfs_field_info mt6375_sysfs_field_tbl[] = { GAUGE_SYSFS_FIELD_WO(initial_set, GAUGE_PROP_INITIAL), GAUGE_SYSFS_FIELD_RO(battery_current_get, GAUGE_PROP_BATTERY_CURRENT), GAUGE_SYSFS_FIELD_RO(coulomb_get, GAUGE_PROP_COULOMB), GAUGE_SYSFS_FIELD_WO(coulomb_interrupt_ht_set, GAUGE_PROP_COULOMB_HT_INTERRUPT), GAUGE_SYSFS_FIELD_WO(coulomb_interrupt_lt_set, GAUGE_PROP_COULOMB_LT_INTERRUPT), GAUGE_SYSFS_FIELD_RO(battery_exist_get, GAUGE_PROP_BATTERY_EXIST), GAUGE_SYSFS_FIELD_RO(hw_version_get, GAUGE_PROP_HW_VERSION), GAUGE_SYSFS_FIELD_RO(bat_vol_get, GAUGE_PROP_BATTERY_VOLTAGE), GAUGE_SYSFS_FIELD_RO(battery_temperature_adc_get, GAUGE_PROP_BATTERY_TEMPERATURE_ADC), GAUGE_SYSFS_FIELD_RO(bif_voltage_get, GAUGE_PROP_BIF_VOLTAGE), GAUGE_SYSFS_FIELD_WO(en_h_vbat_set, GAUGE_PROP_EN_HIGH_VBAT_INTERRUPT), GAUGE_SYSFS_FIELD_WO(en_l_vbat_set, GAUGE_PROP_EN_LOW_VBAT_INTERRUPT), GAUGE_SYSFS_FIELD_WO(vbat_ht_set, GAUGE_PROP_VBAT_HT_INTR_THRESHOLD), GAUGE_SYSFS_FIELD_WO(vbat_lt_set, GAUGE_PROP_VBAT_LT_INTR_THRESHOLD), GAUGE_SYSFS_FIELD_RW(rtc_ui_soc, rtc_ui_soc_set, rtc_ui_soc_get, GAUGE_PROP_RTC_UI_SOC), GAUGE_SYSFS_FIELD_RO(ptim_battery_voltage_get, GAUGE_PROP_PTIM_BATTERY_VOLTAGE), GAUGE_SYSFS_FIELD_RO(ptim_resist_get, GAUGE_PROP_PTIM_RESIST), GAUGE_SYSFS_FIELD_WO(reset_set, GAUGE_PROP_RESET), GAUGE_SYSFS_FIELD_RO(boot_zcv_get, GAUGE_PROP_BOOT_ZCV), GAUGE_SYSFS_FIELD_RO(zcv_get, GAUGE_PROP_ZCV), GAUGE_SYSFS_FIELD_RO(zcv_current_get, GAUGE_PROP_ZCV_CURRENT), GAUGE_SYSFS_FIELD_RO(nafg_cnt_get, GAUGE_PROP_NAFG_CNT), GAUGE_SYSFS_FIELD_RO(nafg_dltv_get, GAUGE_PROP_NAFG_DLTV), GAUGE_SYSFS_FIELD_RW(nafg_c_dltv, nafg_c_dltv_set, nafg_c_dltv_get, GAUGE_PROP_NAFG_C_DLTV), GAUGE_SYSFS_FIELD_WO(nafg_en_set, GAUGE_PROP_NAFG_EN), GAUGE_SYSFS_FIELD_WO(nafg_zcv_set, GAUGE_PROP_NAFG_ZCV), GAUGE_SYSFS_FIELD_RO(nafg_vbat_get, GAUGE_PROP_NAFG_VBAT), GAUGE_SYSFS_FIELD_WO(reset_fg_rtc_set, GAUGE_PROP_RESET_FG_RTC), GAUGE_SYSFS_FIELD_RW(gauge_initialized, gauge_initialized_set, gauge_initialized_get, GAUGE_PROP_GAUGE_INITIALIZED), GAUGE_SYSFS_FIELD_RO(average_current_get, GAUGE_PROP_AVERAGE_CURRENT), GAUGE_SYSFS_FIELD_WO(bat_plugout_en_set, GAUGE_PROP_BAT_PLUGOUT_EN), GAUGE_SYSFS_FIELD_WO(zcv_intr_threshold_set, GAUGE_PROP_ZCV_INTR_THRESHOLD), GAUGE_SYSFS_FIELD_WO(zcv_intr_en_set, GAUGE_PROP_ZCV_INTR_EN), GAUGE_SYSFS_FIELD_WO(soff_reset_set, GAUGE_PROP_SOFF_RESET), GAUGE_SYSFS_FIELD_WO(ncar_reset_set, GAUGE_PROP_NCAR_RESET), GAUGE_SYSFS_FIELD_WO(bat_cycle_intr_threshold_set, GAUGE_PROP_BAT_CYCLE_INTR_THRESHOLD), GAUGE_SYSFS_FIELD_WO(hw_info_set, GAUGE_PROP_HW_INFO), GAUGE_SYSFS_FIELD_WO(event_set, GAUGE_PROP_EVENT), GAUGE_SYSFS_FIELD_WO(en_bat_tmp_ht_set, GAUGE_PROP_EN_BAT_TMP_HT), GAUGE_SYSFS_FIELD_WO(en_bat_tmp_lt_set, GAUGE_PROP_EN_BAT_TMP_LT), GAUGE_SYSFS_FIELD_WO(bat_tmp_ht_threshold_set, GAUGE_PROP_BAT_TMP_HT_THRESHOLD), GAUGE_SYSFS_FIELD_WO(bat_tmp_lt_threshold_set, GAUGE_PROP_BAT_TMP_LT_THRESHOLD), GAUGE_SYSFS_INFO_FIELD_RW(info_2sec_reboot, GAUGE_PROP_2SEC_REBOOT), GAUGE_SYSFS_INFO_FIELD_RW(info_pl_charging_status, GAUGE_PROP_PL_CHARGING_STATUS), GAUGE_SYSFS_INFO_FIELD_RW(info_monitor_plchg_status, GAUGE_PROP_MONITER_PLCHG_STATUS), GAUGE_SYSFS_INFO_FIELD_RW(info_bat_plug_status, GAUGE_PROP_BAT_PLUG_STATUS), GAUGE_SYSFS_INFO_FIELD_RW(info_is_nvram_fail_mode, GAUGE_PROP_IS_NVRAM_FAIL_MODE), GAUGE_SYSFS_INFO_FIELD_RW(info_monitor_soff_validtime, GAUGE_PROP_MONITOR_SOFF_VALIDTIME), GAUGE_SYSFS_INFO_FIELD_RW(info_con0_soc, GAUGE_PROP_CON0_SOC), GAUGE_SYSFS_INFO_FIELD_RW(info_shutdown_car, GAUGE_PROP_SHUTDOWN_CAR), GAUGE_SYSFS_INFO_FIELD_RW(car_tune_value, GAUGE_PROP_CAR_TUNE_VALUE), GAUGE_SYSFS_INFO_FIELD_RW(r_fg_value, GAUGE_PROP_R_FG_VALUE), GAUGE_SYSFS_INFO_FIELD_RW(vbat2_detect_time, GAUGE_PROP_VBAT2_DETECT_TIME), GAUGE_SYSFS_INFO_FIELD_RW(vbat2_detect_counter, GAUGE_PROP_VBAT2_DETECT_COUNTER), GAUGE_SYSFS_FIELD_WO(bat_temp_froze_en_set, GAUGE_PROP_BAT_TEMP_FROZE_EN), GAUGE_SYSFS_FIELD_RO(battery_voltage_cali, GAUGE_PROP_BAT_EOC), GAUGE_SYSFS_FIELD_RO(regmap_type_get, GAUGE_PROP_REGMAP_TYPE), GAUGE_SYSFS_FIELD_RO(battery_cic2_get, GAUGE_PROP_CIC2), }; static struct attribute *mt6375_sysfs_attrs[GAUGE_PROP_MAX + 1]; static const struct attribute_group mt6375_sysfs_attr_group = { .attrs = mt6375_sysfs_attrs, }; static void mt6375_sysfs_init_attrs(void) { int i, limit = ARRAY_SIZE(mt6375_sysfs_field_tbl); for (i = 0; i < limit; i++) mt6375_sysfs_attrs[i] = &mt6375_sysfs_field_tbl[i].attr.attr; mt6375_sysfs_attrs[limit] = NULL; /* Has additional entry for this */ } static int mt6375_sysfs_create_group(struct mtk_gauge *gauge) { mt6375_sysfs_init_attrs(); return sysfs_create_group(&gauge->psy->dev.kobj, &mt6375_sysfs_attr_group); } signed int battery_meter_meta_tool_cali_car_tune(struct mtk_battery *gm, int meta_current) { int cali_car_tune = 0; if (meta_current == 0) return gm->fg_cust_data.car_tune_value * 10; gm->gauge->hw_status.meta_current = meta_current; bm_err("%s meta_current=%d\n", __func__, meta_current); calculate_car_tune(gm->gauge); cali_car_tune = gm->gauge->hw_status.tmp_car_tune; bm_err("%s cali_car_tune=%d\n", __func__, cali_car_tune); return cali_car_tune; /* 1000 base */ } #if IS_ENABLED(CONFIG_COMPAT) static long compat_adc_cali_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int adc_out_datas[2] = { 1, 1 }; bm_notice("%s 32bit IOCTL, cmd=0x%08x\n", __func__, cmd); if (!filp->f_op || !filp->f_op->unlocked_ioctl) { bm_err("%s file has no f_op or no f_op->unlocked_ioctl.\n", __func__); return -ENOTTY; } if (sizeof(arg) != sizeof(adc_out_datas)) return -EFAULT; switch (cmd) { case Get_META_BAT_VOL: case Get_META_BAT_SOC: case Get_META_BAT_CAR_TUNE_VALUE: case Set_META_BAT_CAR_TUNE_VALUE: case Set_BAT_DISABLE_NAFG: case Set_CARTUNE_TO_KERNEL: { bm_notice( "%s send to unlocked_ioctl cmd=0x%08x\n", __func__, cmd); return filp->f_op->unlocked_ioctl( filp, cmd, (unsigned long)compat_ptr(arg)); } break; default: bm_err("%s unknown IOCTL: 0x%08x, %d\n", __func__, cmd, adc_out_datas[0]); break; } return 0; } #endif static long adc_cali_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int *user_data_addr; int ret = 0; int adc_in_data[2] = { 1, 1 }; int adc_out_data[2] = { 1, 1 }; int temp_car_tune; int isdisNAFG = 0; struct mtk_battery *gm; gm = get_mtk_battery(); mutex_lock(&gm->gauge->fg_mutex); user_data_addr = (int *)arg; ret = copy_from_user(adc_in_data, user_data_addr, sizeof(adc_in_data)); if (adc_in_data[1] < 0) { bm_err("%s unknown data: %d\n", __func__, adc_in_data[1]); mutex_unlock(&gm->gauge->fg_mutex); return -EFAULT; } switch (cmd) { /* add for meta tool------------------------------- */ case Get_META_BAT_VOL: adc_out_data[0] = gauge_get_int_property(GAUGE_PROP_BATTERY_VOLTAGE); if (copy_to_user(user_data_addr, adc_out_data, sizeof(adc_out_data))) { mutex_unlock(&gm->gauge->fg_mutex); return -EFAULT; } bm_notice("**** unlocked_ioctl :Get_META_BAT_VOL Done!\n"); break; case Get_META_BAT_SOC: adc_out_data[0] = gm->ui_soc; if (copy_to_user(user_data_addr, adc_out_data, sizeof(adc_out_data))) { mutex_unlock(&gm->gauge->fg_mutex); return -EFAULT; } bm_notice("**** unlocked_ioctl :Get_META_BAT_SOC Done!\n"); break; case Get_META_BAT_CAR_TUNE_VALUE: adc_out_data[0] = gm->fg_cust_data.car_tune_value; bm_err("Get_BAT_CAR_TUNE_VALUE, res=%d\n", adc_out_data[0]); if (copy_to_user(user_data_addr, adc_out_data, sizeof(adc_out_data))) { mutex_unlock(&gm->gauge->fg_mutex); return -EFAULT; } bm_notice("**** unlocked_ioctl :Get_META_BAT_CAR_TUNE_VALUE Done!\n"); break; case Set_META_BAT_CAR_TUNE_VALUE: /* meta tool input: adc_in_data[1] (mA)*/ /* Send cali_current to hal to calculate car_tune_value*/ temp_car_tune = battery_meter_meta_tool_cali_car_tune(gm, adc_in_data[1]); /* return car_tune_value to meta tool in adc_out_data[0] */ if (temp_car_tune >= 900 && temp_car_tune <= 1100) gm->fg_cust_data.car_tune_value = temp_car_tune; else bm_err("car_tune_value invalid:%d\n", temp_car_tune); adc_out_data[0] = temp_car_tune; if (copy_to_user(user_data_addr, adc_out_data, sizeof(adc_out_data))) { mutex_unlock(&gm->gauge->fg_mutex); return -EFAULT; } bm_err("**** unlocked_ioctl Set_BAT_CAR_TUNE_VALUE[%d], tmp_car_tune=%d result=%d, ret=%d\n", adc_in_data[1], adc_out_data[0], temp_car_tune, ret); break; case Set_BAT_DISABLE_NAFG: isdisNAFG = adc_in_data[1]; if (isdisNAFG == 1) { gm->cmd_disable_nafg = true; wakeup_fg_algo_cmd( gm, FG_INTR_KERNEL_CMD, FG_KERNEL_CMD_DISABLE_NAFG, 1); } else if (isdisNAFG == 0) { gm->cmd_disable_nafg = false; wakeup_fg_algo_cmd( gm, FG_INTR_KERNEL_CMD, FG_KERNEL_CMD_DISABLE_NAFG, 0); } bm_debug("unlocked_ioctl Set_BAT_DISABLE_NAFG,isdisNAFG=%d [%d]\n", isdisNAFG, adc_in_data[1]); break; /* add bing meta tool------------------------------- */ case Set_CARTUNE_TO_KERNEL: temp_car_tune = adc_in_data[1]; if (temp_car_tune > 500 && temp_car_tune < 1500) gm->fg_cust_data.car_tune_value = temp_car_tune; bm_err("**** unlocked_ioctl Set_CARTUNE_TO_KERNEL[%d,%d], ret=%d\n", adc_in_data[0], adc_in_data[1], ret); break; default: bm_err("**** unlocked_ioctl unknown IOCTL: 0x%08x\n", cmd); mutex_unlock(&gm->gauge->fg_mutex); return -EINVAL; } mutex_unlock(&gm->gauge->fg_mutex); return 0; } static int adc_cali_open(struct inode *inode, struct file *file) { return 0; } static int adc_cali_release(struct inode *inode, struct file *file) { return 0; } static const struct file_operations adc_cali_fops = { .owner = THIS_MODULE, .unlocked_ioctl = adc_cali_ioctl, #if IS_ENABLED(CONFIG_COMPAT) .compat_ioctl = compat_adc_cali_ioctl, #endif .open = adc_cali_open, .release = adc_cali_release, }; static int adc_cali_cdev_init(struct platform_device *pdev) { int ret = 0; struct class_device *class_dev = NULL; struct mtk_battery *gm; gm = get_mtk_battery(); if (gm != NULL) mutex_init(&gm->gauge->fg_mutex); ret = alloc_chrdev_region(&bat_cali_devno, 0, 1, BAT_CALI_DEVNAME); if (ret) bm_err("Error: Can't Get Major number for adc_cali\n"); bat_cali_cdev = cdev_alloc(); bat_cali_cdev->owner = THIS_MODULE; bat_cali_cdev->ops = &adc_cali_fops; ret = cdev_add(bat_cali_cdev, bat_cali_devno, 1); if (ret) bm_err("adc_cali Error: cdev_add\n"); bat_cali_major = MAJOR(bat_cali_devno); bat_cali_class = class_create(THIS_MODULE, BAT_CALI_DEVNAME); class_dev = (struct class_device *)device_create(bat_cali_class, NULL, bat_cali_devno, NULL, BAT_CALI_DEVNAME); return 0; } static void mtk_gauge_netlink_handler(struct sk_buff *skb) { mtk_battery_netlink_handler(skb); } static int bat_create_netlink(struct platform_device *pdev) { struct mt6375_priv *priv = platform_get_drvdata(pdev); struct mtk_gauge *gauge = &priv->gauge; struct netlink_kernel_cfg cfg = { .input = mtk_gauge_netlink_handler, }; gauge->gm->mtk_battery_sk = netlink_kernel_create(&init_net, NETLINK_FGD, &cfg); if (gauge->gm->mtk_battery_sk == NULL) { bm_err("netlink_kernel_create error\n"); return -EIO; } bm_err("[%s]netlink_kernel_create protol= %d\n", __func__, NETLINK_FGD); return 0; } static enum power_supply_property gauge_properties[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_ENERGY_EMPTY, POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, }; static int get_ptim_current(struct mtk_gauge *gauge) { struct mt6375_priv *priv = container_of(gauge, struct mt6375_priv, gauge); u16 reg_value = 0; int dvalue; int r_fg_value; int car_tune_value; r_fg_value = gauge->hw_status.r_fg_value; car_tune_value = gauge->gm->fg_cust_data.car_tune_value; regmap_raw_read(gauge->regmap, RG_FGADC_R_CON0, ®_value, sizeof(reg_value)); dvalue = reg_to_current(gauge, reg_value); /* Auto adjust value */ if (r_fg_value != priv->default_r_fg && r_fg_value != 0) dvalue = (dvalue * priv->default_r_fg) / r_fg_value; dvalue = ((dvalue * car_tune_value) / 1000); /* ptim current >0 means discharge, different to bat_current */ dvalue = dvalue * -1; bm_debug("[%s]ptim current:%d\n", __func__, dvalue); return dvalue; } static int psy_gauge_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct mtk_gauge *gauge = power_supply_get_drvdata(psy); struct mtk_battery *gm; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: /* store disableGM30 status to mtk-gauge psy for DLPT */ if (gauge == NULL || gauge->gm == NULL) val->intval = 0; else val->intval = gauge->gm->disableGM30; break; case POWER_SUPPLY_PROP_ONLINE: if (gauge == NULL || gauge->gm == NULL) val->intval = 0; else val->intval = gauge->gm->disableGM30; break; case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = get_ptim_current(gauge); break; case POWER_SUPPLY_PROP_ENERGY_EMPTY: gm = gauge->gm; if (gm != NULL) val->intval = gm->sdc.shutdown_status.is_dlpt_shutdown; break; default: return -EINVAL; } return 0; } static int psy_gauge_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct mtk_gauge *gauge = power_supply_get_drvdata(psy); struct mtk_battery *gm; int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: pr_notice("%s: %d %d\n", __func__, psp, val->intval); break; case POWER_SUPPLY_PROP_ENERGY_EMPTY: gm = gauge->gm; if (gm != NULL && val->intval == 1) set_shutdown_cond(gm, DLPT_SHUTDOWN); break; case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: gm = gauge->gm; if (gm != NULL && val->intval != 0) { gm->imix = val->intval; if (gm->imix > 5500) { gm->imix = 5500; pr_notice("imix check limit 5500:%d\n", val->intval); } } break; default: ret = -EINVAL; break; } return ret; } static int mtk_gauge_proprietary_init(struct mt6375_priv *priv) { struct mtk_gauge *gauge = &priv->gauge; /* Variable initialization */ gauge->regmap = priv->regmap; gauge->regmap_type = REGMAP_TYPE_I2C; gauge->pdev = to_platform_device(priv->dev); mutex_init(&gauge->ops_lock); gauge->hw_status.car_tune_value = 1000; gauge->attr = mt6375_sysfs_field_tbl; if (battery_psy_init(gauge->pdev)) return -ENOMEM; gauge->psy_desc.name = "mtk-gauge"; gauge->psy_desc.type = POWER_SUPPLY_TYPE_UNKNOWN; gauge->psy_desc.properties = gauge_properties; gauge->psy_desc.num_properties = ARRAY_SIZE(gauge_properties); gauge->psy_desc.get_property = psy_gauge_get_property; gauge->psy_desc.set_property = psy_gauge_set_property; gauge->psy_cfg.drv_data = gauge; gauge->psy = power_supply_register(NULL, &gauge->psy_desc, &gauge->psy_cfg); if (IS_ERR(gauge->psy)) return PTR_ERR(gauge->psy); mt6375_sysfs_create_group(gauge); bat_create_netlink(gauge->pdev); initial_set(gauge, 0, 0); battery_init(gauge->pdev); adc_cali_cdev_init(gauge->pdev); return 0; } static int mt6375_gauge_refactor_unit(struct mt6375_priv *priv) { struct device_node *np = priv->dev->of_node; const int r_fg_val[] = { 50, 20, 10, 5 }; u32 regval = 0, r_fg_value = 0, curr_measure_20a = 0, unit_multiple = 0; int ret; priv->unit_fgcurrent = UNIT_FGCURRENT; priv->unit_charge = UNIT_CHARGE; priv->unit_fg_iavg = UNIT_FG_IAVG; priv->unit_fgcar_zcv = UNIT_FGCAR_ZCV; /* Get default r_fg gain error selection, must be set in LK */ ret = regmap_read(priv->regmap, RG_FGADC_ANA_ELR4, ®val); if (ret) return ret; regval &= FG_GAINERR_SEL_MASK; priv->default_r_fg = r_fg_val[regval]; ret = of_property_read_u32(np, "R_FG_VALUE", &r_fg_value); r_fg_value *= 10; ret |= of_property_read_u32(np, "CURR_MEASURE_20A", &curr_measure_20a); ret |= of_property_read_u32(np, "UNIT_MULTIPLE", &unit_multiple); if (ret) { dev_notice(priv->dev, "%s: failed to parse dt\n", __func__); return -EINVAL; } if (r_fg_value == 20) priv->default_r_fg = 20; if (curr_measure_20a) { priv->default_r_fg = 10; priv->unit_fgcurrent *= unit_multiple; priv->unit_charge *= unit_multiple; priv->unit_fg_iavg *= unit_multiple; priv->unit_fgcar_zcv *= unit_multiple; } pr_notice("%s:20A:%d,r_fg:%d,unit_fg_current:%d,unit_charge:%d,unit_fg_iavg:%d,unit_fgcar_zcv:%d\n", __func__, curr_measure_20a, priv->default_r_fg, priv->unit_fgcurrent, priv->unit_charge, priv->unit_fg_iavg, priv->unit_fgcar_zcv); return 0; } static int mt6375_gauge_probe(struct platform_device *pdev) { struct mt6375_priv *priv; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &pdev->dev; mutex_init(&priv->irq_lock); platform_set_drvdata(pdev, priv); priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!priv->regmap) { dev_err(&pdev->dev, "Failed to get regmap\n"); return -ENODEV; } priv->irq = platform_get_irq(pdev, 0); if (priv->irq < 0) { dev_err(&pdev->dev, "Failed to get gm30 irq\n"); return priv->irq; } ret = gauge_add_irq_chip(priv); if (ret) { dev_err(&pdev->dev, "Failed to add irq chip\n"); return ret; } ret = gauge_get_all_auxadc_channels(priv); if (ret) { dev_err(&pdev->dev, "Failed to get all auxadc\n"); goto out_irq_chip; } ret = mt6375_auxadc_init_vbat_calibration(priv); if (ret) { dev_notice(&pdev->dev, "Failed to init vbat calibration\n"); goto out_irq_chip; } ret = gauge_get_all_interrupts(priv); if (ret) { dev_err(&pdev->dev, "Failed to get all interrupts\n"); goto out_irq_chip; } ret = mt6375_gauge_refactor_unit(priv); if (ret) { dev_notice(&pdev->dev, "Failed to refactor unit\n"); goto out_irq_chip; } ret = mtk_gauge_proprietary_init(priv); if (ret) { dev_err(&pdev->dev, "Failed to do mtk gauge init\n"); goto out_irq_chip; } return 0; out_irq_chip: gauge_del_irq_chip(priv); return ret; } static int mt6375_gauge_remove(struct platform_device *pdev) { struct mt6375_priv *priv = platform_get_drvdata(pdev); gauge_del_irq_chip(priv); return 0; } static void mt6375_gauge_shutdown(struct platform_device *pdev) { struct mt6375_priv *priv = platform_get_drvdata(pdev); struct mtk_battery *gm = priv->gauge.gm; if (gm->shutdown) gm->shutdown(gm); } static int __maybe_unused mt6375_gauge_suspend(struct device *dev) { struct mt6375_priv *priv = dev_get_drvdata(dev); struct mtk_battery *gm = priv->gauge.gm; pm_message_t state = { .event = 0, }; if (gm->suspend) gm->suspend(gm, state); return 0; } static int __maybe_unused mt6375_gauge_resume(struct device *dev) { struct mt6375_priv *priv = dev_get_drvdata(dev); struct mtk_battery *gm = priv->gauge.gm; if (gm->resume) gm->resume(gm); return 0; } static SIMPLE_DEV_PM_OPS(mt6375_gauge_pm_ops, mt6375_gauge_suspend, mt6375_gauge_resume); static const struct of_device_id __maybe_unused mt6375_gauge_of_match[] = { { .compatible = "mediatek,mt6375-gauge", }, { } }; MODULE_DEVICE_TABLE(of, mt6375_gauge_of_match); static struct platform_driver mt6375_gauge_driver = { .probe = mt6375_gauge_probe, .remove = mt6375_gauge_remove, .shutdown = mt6375_gauge_shutdown, .driver = { .name = "mt6375-gauge", .pm = &mt6375_gauge_pm_ops, .of_match_table = mt6375_gauge_of_match, }, }; module_platform_driver(mt6375_gauge_driver); MODULE_AUTHOR("ChiYuan Huang "); MODULE_DESCRIPTION("MT6375 Gauge Driver"); MODULE_LICENSE("GPL v2");