// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020 MediaTek Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_TRACEPOINTS) && defined(CONFIG_ANDROID_VENDOR_HOOKS) #include #include #endif #define LUT_MAX_ENTRIES 32U #define LUT_FREQ GENMASK(11, 0) #define LUT_ROW_SIZE 0x4 #define CPUFREQ_HW_STATUS BIT(0) #define SVS_HW_STATUS BIT(1) #define POLL_USEC 1000 #define TIMEOUT_USEC 300000 #define REG_FREQ_SCALING 0x4cc enum { REG_FREQ_LUT_TABLE, REG_FREQ_ENABLE, REG_FREQ_PERF_STATE, REG_FREQ_HW_STATE, REG_EM_POWER_TBL, REG_FREQ_LATENCY, REG_ARRAY_SIZE, }; struct cpufreq_mtk { struct cpufreq_frequency_table *table; void __iomem *reg_bases[REG_ARRAY_SIZE]; int nr_opp; unsigned int last_index; cpumask_t related_cpus; }; static const u16 cpufreq_mtk_offsets[REG_ARRAY_SIZE] = { [REG_FREQ_LUT_TABLE] = 0x0, [REG_FREQ_ENABLE] = 0x84, [REG_FREQ_PERF_STATE] = 0x88, [REG_FREQ_HW_STATE] = 0x8c, [REG_EM_POWER_TBL] = 0x90, [REG_FREQ_LATENCY] = 0x114, }; static struct cpufreq_mtk *mtk_freq_domain_map[NR_CPUS]; static bool freq_scaling_disabled = true; static int look_up_cpu(struct device *cpu_dev) { unsigned int cpu = 0; for_each_possible_cpu(cpu) { if (cpu_dev == get_cpu_device(cpu)) return cpu; } return 0; /* fallback to cpu0 */ } static int __maybe_unused mtk_cpufreq_get_cpu_power(unsigned long *power, unsigned long *KHz, struct device *cpu_dev) { int cpu = look_up_cpu(cpu_dev); struct cpufreq_mtk *c = mtk_freq_domain_map[cpu]; int i; for (i = 0; i < c->nr_opp; i++) { if (c->table[i].frequency < *KHz) break; } i--; *KHz = c->table[i].frequency; *power = readl_relaxed(c->reg_bases[REG_EM_POWER_TBL] + i * LUT_ROW_SIZE) / 1000; return 0; } static int mtk_cpufreq_hw_target_index(struct cpufreq_policy *policy, unsigned int index) { struct cpufreq_mtk *c = policy->driver_data; writel_relaxed(index, c->reg_bases[REG_FREQ_PERF_STATE]); return 0; } static unsigned int mtk_cpufreq_hw_get(unsigned int cpu) { struct cpufreq_mtk *c; unsigned int index, nr_opp; c = mtk_freq_domain_map[cpu]; nr_opp = c->nr_opp; index = readl_relaxed(c->reg_bases[REG_FREQ_PERF_STATE]); if (index <= LUT_MAX_ENTRIES - 1) { index = min(index, LUT_MAX_ENTRIES - 1); return c->table[index].frequency; } else if (c->table[0].frequency >= index && index >= c->table[nr_opp - 1].frequency) { return index; } return -1; } static unsigned int mtk_cpufreq_hw_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq) { struct cpufreq_mtk *c = policy->driver_data; unsigned int index; #if IS_ENABLED(CONFIG_MTK_IRQ_MONITOR_DEBUG) u64 ts[2]; ts[0] = sched_clock(); #endif if (policy->cached_target_freq == target_freq) index = policy->cached_resolved_idx; else index = cpufreq_table_find_index_dl(policy, target_freq); if (!freq_scaling_disabled) { writel_relaxed(target_freq, c->reg_bases[REG_FREQ_PERF_STATE]); if (c->last_index == index) return 0; c->last_index = index; } else writel_relaxed(index, c->reg_bases[REG_FREQ_PERF_STATE]); #if IS_ENABLED(CONFIG_MTK_IRQ_MONITOR_DEBUG) ts[1] = sched_clock(); if ((ts[1] - ts[0] > 100000ULL) && in_hardirq()) { printk_deferred("%s duration %llu, ts[0]=%llu, ts[1]=%llu\n", __func__, ts[1] - ts[0], ts[0], ts[1]); } #endif return policy->freq_table[index].frequency; } static int mtk_cpufreq_hw_cpu_init(struct cpufreq_policy *policy) { struct cpufreq_mtk *c; struct device *cpu_dev; struct em_data_callback em_cb = EM_DATA_CB(mtk_cpufreq_get_cpu_power); struct pm_qos_request *qos_request; int sig, pwr_hw = CPUFREQ_HW_STATUS | SVS_HW_STATUS; unsigned int latency; qos_request = kzalloc(sizeof(*qos_request), GFP_KERNEL); if (!qos_request) return -ENOMEM; cpu_dev = get_cpu_device(policy->cpu); if (!cpu_dev) { pr_info("failed to get cpu%d device\n", policy->cpu); kfree(qos_request); return -ENODEV; } c = mtk_freq_domain_map[policy->cpu]; if (!c) { pr_info("No scaling support for CPU%d\n", policy->cpu); kfree(qos_request); return -ENODEV; } cpumask_copy(policy->cpus, &c->related_cpus); policy->freq_table = c->table; policy->driver_data = c; latency = readl_relaxed(c->reg_bases[REG_FREQ_LATENCY]); if (!latency) latency = CPUFREQ_ETERNAL; /* us convert to ns */ policy->cpuinfo.transition_latency = latency * 1000; policy->fast_switch_possible = true; /* Let CPUs leave idle-off state for SVS CPU initializing */ cpu_latency_qos_add_request(qos_request, PM_QOS_DEFAULT_VALUE); /* HW should be in enabled state to proceed now */ writel_relaxed(0x1, c->reg_bases[REG_FREQ_ENABLE]); if (readl_poll_timeout(c->reg_bases[REG_FREQ_HW_STATE], sig, (sig & pwr_hw) == pwr_hw, POLL_USEC, TIMEOUT_USEC)) { if (!(sig & CPUFREQ_HW_STATUS)) { pr_info("cpufreq hardware of CPU%d is not enabled\n", policy->cpu); cpu_latency_qos_remove_request(qos_request); kfree(qos_request); return -ENODEV; } pr_info("SVS of CPU%d is not enabled\n", policy->cpu); } em_dev_register_perf_domain(cpu_dev, c->nr_opp, &em_cb, policy->cpus, true); cpu_latency_qos_remove_request(qos_request); kfree(qos_request); return 0; } static int mtk_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy) { struct cpufreq_mtk *c; c = mtk_freq_domain_map[policy->cpu]; if (!c) { pr_info("No scaling support for CPU%d\n", policy->cpu); return -ENODEV; } /* HW should be in paused state now */ writel_relaxed(0x0, c->reg_bases[REG_FREQ_ENABLE]); return 0; } #if defined(CONFIG_TRACEPOINTS) && defined(CONFIG_ANDROID_VENDOR_HOOKS) static void mtk_cpufreq_suppress(void *data, struct device *dev, int val) { dev_set_uevent_suppress(dev, val); } #endif static struct cpufreq_driver cpufreq_mtk_hw_driver = { .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | CPUFREQ_HAVE_GOVERNOR_PER_POLICY | CPUFREQ_IS_COOLING_DEV, .verify = cpufreq_generic_frequency_table_verify, .target_index = mtk_cpufreq_hw_target_index, .get = mtk_cpufreq_hw_get, .init = mtk_cpufreq_hw_cpu_init, .exit = mtk_cpufreq_hw_cpu_exit, .fast_switch = mtk_cpufreq_hw_fast_switch, .name = "mtk-cpufreq-hw", .attr = cpufreq_generic_attr, }; static int mtk_cpu_create_freq_table(struct platform_device *pdev, struct cpufreq_mtk *c) { struct device *dev = &pdev->dev; void __iomem *base_table; u32 data, i, freq, prev_freq = 0; c->table = devm_kcalloc(dev, LUT_MAX_ENTRIES + 1, sizeof(*c->table), GFP_KERNEL); if (!c->table) return -ENOMEM; base_table = c->reg_bases[REG_FREQ_LUT_TABLE]; for (i = 0; i < LUT_MAX_ENTRIES; i++) { data = readl_relaxed(base_table + (i * LUT_ROW_SIZE)); freq = FIELD_GET(LUT_FREQ, data) * 1000; if (freq == prev_freq) break; c->table[i].frequency = freq; dev_dbg(dev, "index=%d freq=%d\n", i, c->table[i].frequency); prev_freq = freq; } c->table[i].frequency = CPUFREQ_TABLE_END; c->nr_opp = i; return 0; } static int mtk_get_related_cpus(int index, struct cpufreq_mtk *c) { struct device_node *cpu_np; struct of_phandle_args args; int cpu, ret; for_each_possible_cpu(cpu) { cpu_np = of_cpu_device_node_get(cpu); if (!cpu_np) continue; ret = of_parse_phandle_with_args(cpu_np, "performance-domains", "#performance-domain-cells", 0, &args); of_node_put(cpu_np); if (ret < 0) continue; if (index == args.args[0]) { cpumask_set_cpu(cpu, &c->related_cpus); mtk_freq_domain_map[cpu] = c; } } return 0; } static int mtk_cpu_resources_init(struct platform_device *pdev, unsigned int cpu, int index, const u16 *offsets) { struct cpufreq_mtk *c; struct device *dev = &pdev->dev; int ret, i; void __iomem *base; if (mtk_freq_domain_map[cpu]) return 0; c = devm_kzalloc(dev, sizeof(*c), GFP_KERNEL); if (!c) return -ENOMEM; base = devm_platform_ioremap_resource(pdev, index); if (IS_ERR(base)) return PTR_ERR(base); for (i = REG_FREQ_LUT_TABLE; i < REG_ARRAY_SIZE; i++) c->reg_bases[i] = base + offsets[i]; ret = mtk_get_related_cpus(index, c); if (ret) { dev_info(dev, "Domain-%d failed to get related CPUs\n", index); return ret; } ret = mtk_cpu_create_freq_table(pdev, c); if (ret) { dev_info(dev, "Domain-%d failed to create freq table\n", index); return ret; } return 0; } static int mtk_cpufreq_hw_driver_probe(struct platform_device *pdev) { struct device_node *cpu_np; struct device_node *hvfs_node; struct of_phandle_args args; struct resource *csram_res; struct platform_device *pdev_c; static void __iomem *csram_base; const u16 *offsets; unsigned int cpu; int ret; offsets = of_device_get_match_data(&pdev->dev); if (!offsets) return -EINVAL; hvfs_node = of_find_node_by_name(NULL, "cpuhvfs"); if (hvfs_node == NULL) { pr_notice("failed to find node @ %s\n", __func__); return -ENODEV; } pdev_c = of_find_device_by_node(hvfs_node); if (pdev_c == NULL) { pr_notice("failed to find pdev @ %s\n", __func__); return -EINVAL; } csram_res = platform_get_resource(pdev_c, IORESOURCE_MEM, 1); if (!csram_res) { pr_notice("failed to get mem resource @ %s\n", __func__); return -ENODEV; } if (!request_mem_region(csram_res->start + REG_FREQ_SCALING, LUT_ROW_SIZE, csram_res->name)) { pr_notice("failed to request resource %pR\n", csram_res); return -EBUSY; } csram_base = ioremap(csram_res->start + REG_FREQ_SCALING, LUT_ROW_SIZE); if (!csram_base) { pr_notice("failed to map csram_base @ %s\n", __func__); ret = -ENOMEM; goto release_region; } if (readl_relaxed(csram_base)) freq_scaling_disabled = false; for_each_possible_cpu(cpu) { cpu_np = of_cpu_device_node_get(cpu); if (!cpu_np) { dev_info(&pdev->dev, "Failed to get cpu %d device\n", cpu); return -ENODEV; } ret = of_parse_phandle_with_args(cpu_np, "performance-domains", "#performance-domain-cells", 0, &args); if (ret < 0) return ret; /* Get the bases of cpufreq for domains */ ret = mtk_cpu_resources_init(pdev, cpu, args.args[0], offsets); if (ret) { dev_info(&pdev->dev, "CPUFreq resource init failed\n"); return ret; } } ret = cpufreq_register_driver(&cpufreq_mtk_hw_driver); if (ret) { dev_info(&pdev->dev, "CPUFreq HW driver failed to register\n"); return ret; } return 0; release_region: release_mem_region(csram_res->start, resource_size(csram_base)); #if defined(CONFIG_TRACEPOINTS) && defined(CONFIG_ANDROID_VENDOR_HOOKS) ret = register_trace_android_vh_cpufreq_offline(mtk_cpufreq_suppress, NULL); #endif return ret; } static int mtk_cpufreq_hw_driver_remove(struct platform_device *pdev) { return cpufreq_unregister_driver(&cpufreq_mtk_hw_driver); } static const struct of_device_id mtk_cpufreq_hw_match[] = { { .compatible = "mediatek,cpufreq-hw", .data = &cpufreq_mtk_offsets }, {} }; static struct platform_driver mtk_cpufreq_hw_driver = { .probe = mtk_cpufreq_hw_driver_probe, .remove = mtk_cpufreq_hw_driver_remove, .driver = { .name = "mtk-cpufreq-hw", .of_match_table = mtk_cpufreq_hw_match, }, }; module_platform_driver(mtk_cpufreq_hw_driver); MODULE_DESCRIPTION("Mediatek cpufreq-hw driver"); MODULE_LICENSE("GPL v2");