1
0
Fork 0

command: add a helper for the parallel execution boilerplate

Now that we have a bunch of subcommands doing parallel execution, a
common pattern arises that we can factor out for most of them.  We
leave forall alone as it's a bit too complicated atm to cut over.

Change-Id: I3617a4f7c66142bcd1ab030cb4cca698a65010ac
Reviewed-on: https://gerrit-review.googlesource.com/c/git-repo/+/301942
Tested-by: Mike Frysinger <vapier@google.com>
Reviewed-by: Chris Mcdonald <cjmcdonald@google.com>
This commit is contained in:
Mike Frysinger 2021-03-01 00:56:38 -05:00
parent b8bf291ddb
commit b5d075d04f
10 changed files with 145 additions and 143 deletions

View file

@ -13,11 +13,10 @@
# limitations under the License.
import functools
import multiprocessing
import os
import sys
from command import Command, DEFAULT_LOCAL_JOBS, WORKER_BATCH_SIZE
from command import Command, DEFAULT_LOCAL_JOBS
from git_config import IsImmutable
from git_command import git
import gitc_utils
@ -55,7 +54,7 @@ revision specified in the manifest.
if not git.check_ref_format('heads/%s' % nb):
self.OptionParser.error("'%s' is not a valid name" % nb)
def _ExecuteOne(self, opt, nb, project):
def _ExecuteOne(self, revision, nb, project):
"""Start one project."""
# If the current revision is immutable, such as a SHA1, a tag or
# a change, then we can't push back to it. Substitute with
@ -69,7 +68,7 @@ revision specified in the manifest.
try:
ret = project.StartBranch(
nb, branch_merge=branch_merge, revision=opt.revision)
nb, branch_merge=branch_merge, revision=revision)
except Exception as e:
print('error: unable to checkout %s: %s' % (project.name, e), file=sys.stderr)
ret = False
@ -123,23 +122,18 @@ revision specified in the manifest.
pm.update()
pm.end()
def _ProcessResults(results):
def _ProcessResults(_pool, pm, results):
for (result, project) in results:
if not result:
err.append(project)
pm.update()
pm = Progress('Starting %s' % nb, len(all_projects), quiet=opt.quiet)
# NB: Multiprocessing is heavy, so don't spin it up for one job.
if len(all_projects) == 1 or opt.jobs == 1:
_ProcessResults(self._ExecuteOne(opt, nb, x) for x in all_projects)
else:
with multiprocessing.Pool(opt.jobs) as pool:
results = pool.imap_unordered(
functools.partial(self._ExecuteOne, opt, nb), all_projects,
chunksize=WORKER_BATCH_SIZE)
_ProcessResults(results)
pm.end()
self.ExecuteInParallel(
opt.jobs,
functools.partial(self._ExecuteOne, opt.revision, nb),
all_projects,
callback=_ProcessResults,
output=Progress('Starting %s' % (nb,), len(all_projects), quiet=opt.quiet))
if err:
for p in err: